ON DUAL CONVERGENCE AND THE RATE OF PRIMAL CONVERGENCE OF BREGMAN'S CONVEX PROGRAMMING METHOD

被引:17
|
作者
Iusem, Alfredo N. [1 ]
机构
[1] Inst Matemat Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
关键词
convex programming; iterative algorithms; entropy maximization; large and sparse matrices;
D O I
10.1137/0801025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bregman's method is an iterative algorithm for solving optimization problems with convex objective and linear inequality constraints. It generates two sequences: one, the primal one, is known to converge to the solution of the problem. Under the assumption of smoothness of the objective function at the solution, it is proved that the other sequence, the dual one, converges to a solution of the dual problem, and that the rate of convergence of the primal sequence is at least linear.
引用
收藏
页码:401 / 423
页数:23
相关论文
共 50 条
  • [1] Ergodic, primal convergence in dual subgradient schemes for convex programming
    Larsson, T
    Patriksson, M
    Strömberg, AB
    [J]. MATHEMATICAL PROGRAMMING, 1999, 86 (02) : 283 - 312
  • [2] Ergodic, primal convergence in dual subgradient schemes for convex programming
    Torbjörn Larsson
    Michael Patriksson
    Ann-Brith Strömberg
    [J]. Mathematical Programming, 1999, 86 : 283 - 312
  • [3] Dual convergence of the proximal point method with Bregman distances for linear programming
    Cruz Neto, J. X.
    Ferreira, O. P.
    Iusem, A. N.
    Monteiro, R. D. C.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (02): : 339 - 360
  • [4] Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems
    Magnus Önnheim
    Emil Gustavsson
    Ann-Brith Strömberg
    Michael Patriksson
    Torbjörn Larsson
    [J]. Mathematical Programming, 2017, 163 : 57 - 84
  • [5] Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems
    Onnheim, Magnus
    Gustavsson, Emil
    Stromberg, Ann-Brith
    Patriksson, Michael
    Larsson, Torbjorn
    [J]. MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 57 - 84
  • [6] Local convergence of a primal-dual method for degenerate nonlinear programming
    Vicente, LN
    Wright, SJ
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (03) : 311 - 328
  • [7] Local Convergence of a Primal-Dual Method for Degenerate Nonlinear Programming
    Luís N. Vicente
    Stephen J. Wright
    [J]. Computational Optimization and Applications, 2002, 22 : 311 - 328
  • [8] Primal and dual convergence of a proximal point exponential penalty method for linear programming
    Alvarez, F
    Cominetti, R
    [J]. MATHEMATICAL PROGRAMMING, 2002, 93 (01) : 87 - 96
  • [9] Primal and dual convergence of a proximal point exponential penalty method for linear programming
    F. Alvarez
    R. Cominetti
    [J]. Mathematical Programming, 2002, 93 : 87 - 96
  • [10] On the convergence of an inexact primal-dual interior point method for linear programming
    Baryamureeba, V
    Steihaug, T
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 629 - 637