SEMISTABLE DEGENERATIONS OF ENRIQUES AND HYPERELLIPTIC SURFACES

被引:20
|
作者
MORRISON, DR [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1215/S0012-7094-81-04813-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:197 / 249
页数:53
相关论文
共 50 条
  • [1] PROJECTIVE DEGENERATIONS OF ENRIQUES SURFACES
    SHAH, J
    [J]. MATHEMATISCHE ANNALEN, 1981, 256 (04) : 475 - 495
  • [2] On moduli spaces of semistable sheaves on Enriques surfaces
    Hauzer, Marcin
    [J]. ANNALES POLONICI MATHEMATICI, 2010, 99 (03) : 305 - 321
  • [3] DEGENERATIONS OF K3 SURFACES AND ENRIQUES SURFACES
    KULIKOV, VS
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (05): : 957 - 989
  • [4] Godeaux Surfaces with an Enriques Involution and Some Stable Degenerations
    Lopes, Margarida Mendes
    Pardini, Rita
    [J]. FROM CLASSICAL TO MODERN ALGEBRAIC GEOMETRY: CORRADO SEGRE'S MASTERSHIP AND LEGACY, 2016, : 451 - 473
  • [5] Realization of hyperelliptic families with the hyperelliptic semistable monodromies
    Ishizaka, M
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2006, 43 (01) : 103 - 119
  • [6] Semistable degenerations and period spaces for polarized K3 surfaces
    Olsson, MC
    [J]. DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) : 121 - 203
  • [7] Derived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristic
    Honigs, Katrina
    Lombardi, Luigi
    Tirabassi, Sofia
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (1-2) : 727 - 749
  • [8] Derived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristic
    Katrina Honigs
    Luigi Lombardi
    Sofia Tirabassi
    [J]. Mathematische Zeitschrift, 2020, 295 : 727 - 749
  • [9] Short Tops and Semistable Degenerations
    Davis, Ryan
    Doran, Charles
    Gewiss, Adam
    Novoseltsev, Andrey
    Skjorshammer, Dmitri
    Syryczuk, Alexa
    Whitcher, Ursula
    [J]. EXPERIMENTAL MATHEMATICS, 2014, 23 (04) : 351 - 362
  • [10] On semistable degenerations of Fano varieties
    Loginov, Konstantin
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 991 - 1005