Four approximate methods are proposed to construct confidence intervals for the estimation of variance components in unbalanced mixed models. The first three methods are modifications of the Wald, arithmetic and harmonic mean procedures, see Harville and Fenech (1985), while the fourth is an adaptive approach, combining the arithmetic and harmonic mean procedures. The performances of the proposed methods were assessed by a Monte Carlo simulation study. It was found that the intervals based on Wald's method maintained the nominal confidence levels across all designs and values of the parameters under study. on the other hand, the arithmetic (harmonic) mean method performed well for small (large) values of the variance component, relative to the error variance component. The adaptive procedure performed rather well except for extremely unbalanced designs. Further, compared with equal tails intervals, the intervals which use special tables, e.g., Table 678 of Tate and Klett (1959), provided adequate coverage while having much shorter lengths and are thus recommended for use in practice.