CONJUGATE-GRADIENT METHODS FOR CONTINUATION PROBLEMS

被引:18
|
作者
ALLGOWER, EL
CHIEN, CS
GEORG, K
WANG, CF
机构
[1] COLORADO STATE UNIV,DEPT MATH,FT COLLINS,CO 80523
[2] NATL CHUNG HSING UNIV,DEPT APPL MATH,TAICHUNG 40227,TAIWAN
[3] UNIV BONN,INST APPL MATH,W-5300 BONN 1,GERMANY
基金
美国国家科学基金会;
关键词
NUMERICAL CONTINUATION METHODS; CONJUGATE GRADIENT METHODS; LARGE SPARSE LINEAR SYSTEMS; NONLINEAR EIGENVALUE PROBLEMS;
D O I
10.1016/0377-0427(91)90157-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study linear and nonlinear conjugate gradient methods for large sparse continuation problems. First we show how the linear conjugate gradient methods can be incorporated as linear solvers in the context of efficient higher-order predictor-Newton corrector continuation methods. The implementation is based on the GMRES of Saad and Schultz. Next we describe how to use a special nonlinear conjugate gradient method to perform the corrector phase. In both cases we deal with the perturbed problems for the bifurcations. Sample numerical results concerning certain nonlinear eigenvalue problems are given.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条