HEAT-CONTENT ASYMPTOTICS OF A RIEMANNIAN MANIFOLD WITH BOUNDARY

被引:74
|
作者
VANDENBERG, M [1 ]
GILKEY, PB [1 ]
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
关键词
D O I
10.1006/jfan.1994.1022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Riemannian manifold with a smooth C(infinity) boundary partial derivative M. Suppose M has initial temperature 1 at time t = 0 and suppose that partial derivative M is kept at temperature 0 for all t > 0. We study the asymptotic behavior of the amount of heat in M as t --> 0+. We generalize these results to arbitrary operators of Laplace type with Dirichlet boundary conditions and to arbitrary smooth initial conditions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:48 / 71
页数:24
相关论文
共 50 条