OPTIMIZATION OF THE JACOBI MATRIX PROPERTIES FOR CLOSING EQUATION SETS IN SHOOTING METHODS

被引:0
|
作者
THAI, DQ
MONASTYRNYI, PI
MAI, NTF
机构
来源
DOKLADY AKADEMII NAUK BELARUSI | 1991年 / 35卷 / 03期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The article is devoted to the urgent problem on designing and obtaining computational algorithms for numerical solution of nonlinear net equation sets. Optimization of Jacobi matrix in the Newton method for closing systems. The results are obtained on a computer.
引用
收藏
页码:209 / 213
页数:5
相关论文
共 50 条
  • [1] Jacobi matrix differential equation, polynomial solutions, and their properties
    Defez, E.
    Jódar, L.
    Law, A.
    Computers and Mathematics with Applications, 2004, 48 (5-6): : 789 - 803
  • [2] Jacobi matrix differential equation, polynomial solutions, and their properties
    Defez, E
    Jódar, L
    Law, A
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 789 - 803
  • [3] SHOOTING METHODS FOR THE SCHRODINGER-EQUATION
    KILLINGBECK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06): : 1411 - 1417
  • [4] The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C
    Tian, Zhaolu
    Tian, Maoyi
    Liu, Zhongyun
    Xu, Tongyang
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 63 - 75
  • [5] PRECISE SHOOTING METHODS FOR THE SCHRODINGER-EQUATION
    HODGSON, RJW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03): : 679 - 683
  • [6] Faster proximal algorithms for matrix optimization using Jacobi-based eigenvalue methods
    Fawzi, Hamza
    Goulbourne, Harry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] Optimization of ammonia reactor using shooting methods
    Chemical Engineering Programme, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia
    WSEAS Trans. Inf. Sci. Appl., 2007, 1 (171-182):
  • [9] Semi-analytic shooting methods for Burgers? equation
    Gie, Gung-Min
    Jung, Chang-Yeol
    Lee, Hoyeon
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 418
  • [10] Some remarks on Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C
    Liu, Zhongyun
    Zhou, Yang
    Zhang, Yuelan
    Lin, Lu
    Xie, Dongxiu
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 305 - 307