QUANTUM DISSIPATIVE SYSTEMS .1. CANONICAL QUANTIZATION AND QUANTUM LIOUVILLE EQUATION

被引:15
|
作者
TARASOV, VE
机构
关键词
D O I
10.1007/BF01018575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sedov's variational principle, which is a generalization of the principle of least action to dissipative processes, is used to generalize canonical quantization and the von Neumann equations to dissipative systems. The example of a harmonic oscillator with friction is considered.
引用
收藏
页码:1100 / 1112
页数:13
相关论文
共 50 条
  • [1] MOMENT-EQUATION REPRESENTATION OF THE DISSIPATIVE QUANTUM LIOUVILLE EQUATION
    STROSCIO, MA
    SUPERLATTICES AND MICROSTRUCTURES, 1986, 2 (01) : 83 - 87
  • [2] Canonical quantization of dissipative systems
    Mahapatra, Ronit
    Haque, Asrarul
    PHYSICS LETTERS A, 2024, 494
  • [3] THE QUANTUM R-MATRIX VIA CANONICAL QUANTIZATION IN THE LIOUVILLE THEORY
    FEI, HB
    GUO, HY
    WANG, ZH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1992, 17 (04) : 429 - 438
  • [4] NEW EQUATION FOR QUANTUM DISSIPATIVE SYSTEMS
    CALDIROLA, P
    MONTALDI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 53 (02): : 291 - 300
  • [5] Second quantization of open quantum systems in Liouville space
    Sukharnikov, Vladislav
    Chuchurka, Stasis
    Benediktovitch, Andrei
    Rohringer, Nina
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [6] Quantum Liouville Equation
    Slobodan Prvanović
    International Journal of Theoretical Physics, 2012, 51 : 2743 - 2753
  • [7] Quantum Liouville Equation
    Prvanovic, Slobodan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (09) : 2743 - 2753
  • [8] ON THE QUANTUM LIOUVILLE EQUATION
    NARCOWICH, FJ
    PHYSICA A, 1985, 134 (01): : 193 - 208
  • [9] Applying the Linblad equation to quantum dissipative systems
    V. S. Kirchanov
    Theoretical and Mathematical Physics, 2006, 148 : 1117 - 1122
  • [10] Applying the Linblad equation to quantum dissipative systems
    Kirchanov, V. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 148 (02) : 1117 - 1122