ART OR SCIENCE - THE DETERMINATION OF THE SYMMETRY LIE-ALGEBRA FOR A HAMILTONIAN WITH ACCIDENTAL DEGENERACY

被引:23
|
作者
MOSHINSKY, M [1 ]
QUESNE, C [1 ]
LOYOLA, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1016/0003-4916(90)90329-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to show that the determination of the symmetry Lie algebra of a Hamiltonian with accidental degeneracy is more a matter of art than science, in the usual sense of these two words. Our thesis is defended through examples in which the Hamiltonians are linear combinations of the number operator N and the angular momentum M of a two dimensional oscillator. The standard approach to the problem when H = N or M, fails for H = N ± M or H = N ± |M|. We develop an alternative analysis for the latter Hamiltonians, which accounts for all the properties that we demand for a symmetry Lie algebra. We show, in the concluding section, examples in which our technique can be applied to more general problems. © 1990.
引用
收藏
页码:103 / 131
页数:29
相关论文
共 24 条
  • [1] ACCIDENTAL DEGENERACY AND SYMMETRY LIE-ALGEBRA
    DIRL, R
    MOSHINSKY, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2423 - 2428
  • [2] LIE-ALGEBRA AND THE QUANTIZATION OF MOMENTA AND THE HAMILTONIAN
    WAN, KK
    VIAZMINSKY, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (05): : 643 - 647
  • [3] SYMMETRY LIE-ALGEBRA OF THE DIRAC OSCILLATOR
    QUESNE, C
    MOSHINSKY, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (12): : 2263 - 2272
  • [4] IDEALS OF LIE-ALGEBRA OF HAMILTONIAN VECTOR FIELDS
    DIAZMIRA.A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (12): : 989 - &
  • [5] ICOSAHEDRON SYMMETRY AND ITS RELATED LIE-ALGEBRA
    SUN, JZ
    LI, XK
    SUN, RN
    LI, BF
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (01): : 14 - 22
  • [6] LIE-ALGEBRA APPROACH TO SYMMETRY-BREAKING
    ANDERSON, JT
    [J]. PHYSICAL REVIEW D, 1981, 23 (08): : 1856 - 1861
  • [7] ON THE COHOMOLOGY OF THE LIE-ALGEBRA OF HAMILTONIAN VECTOR-FIELDS
    GELFAND, IM
    MATHIEU, O
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 108 (02) : 347 - 360
  • [8] THE LIE-ALGEBRA STRUCTURE OF DEGENERATE HAMILTONIAN AND BI-HAMILTONIAN SYSTEMS
    FUCHSSTEINER, B
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04): : 1082 - 1104
  • [9] Symmetry and Orbit Detection via Lie-Algebra Voting
    Shi, Zeyun
    Alliez, Pierre
    Desbrun, Mathieu
    Bao, Hujun
    Huang, Jin
    [J]. COMPUTER GRAPHICS FORUM, 2016, 35 (05) : 217 - 227
  • [10] PERIODIC HAMILTONIAN SYSTEM ASSOCIATED TO THE LIE-ALGEBRA F4
    ROUAISSI, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (11): : 1315 - 1317