CHARACTERIZATION OF LOCALLY CONNECTED CONTINUA BY HYPERSPACE RETRACTIONS

被引:13
|
作者
NADLER, SB [1 ]
机构
[1] UNIV KENTUCKY,DEPT MATH,LEXINGTON,KY 40506
关键词
D O I
10.2307/2041263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条
  • [2] On continua whose hyperspace of subcontinua is σ-locally connected
    Krzeminska, I
    Prajs, JR
    TOPOLOGY AND ITS APPLICATIONS, 1999, 96 (01) : 53 - 61
  • [3] On the uniqueness of the n-fold pseudo-hyperspace suspension for locally connected continua
    Libreros-Lopez, Antonio
    Macias-Romero, Fernando
    Herrera-Carrasco, David
    TOPOLOGY AND ITS APPLICATIONS, 2022, 312
  • [4] ALMOST MESHED LOCALLY CONNECTED CONTINUA WITHOUT UNIQUE n-FOLD HYPERSPACE SUSPENSION
    Herrera-Carrasco, David
    Lopez, Maria de J.
    Macias-Romero, Fernando
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (04): : 1335 - 1365
  • [5] Problems on hyperspace retractions
    Charatonik, JJ
    Charatonik, WJ
    CONTINUUM THEORY, 2002, 230 : 113 - 125
  • [6] Homeomorphism of Hereditarily Locally Connected Continua
    Daghar, Aymen
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (04) : 3269 - 3293
  • [7] 2 NONMETRIC LOCALLY CONNECTED CONTINUA
    GRUENHAGE, G
    TOPOLOGY AND ITS APPLICATIONS, 1990, 35 (2-3) : 209 - 216
  • [8] Homeomorphism of Hereditarily Locally Connected Continua
    Aymen Daghar
    Journal of Dynamics and Differential Equations, 2023, 35 : 3269 - 3293
  • [9] Concerning hereditarily locally connected continua
    Whyburn, GT
    AMERICAN JOURNAL OF MATHEMATICS, 1931, 53 : 374 - 384
  • [10] Continua with unique hyperspace
    Acosta, G
    CONTINUUM THEORY, 2002, 230 : 33 - 49