A STOCHASTIC-SYSTEM OF PARTICLES MODELING THE EULER EQUATIONS

被引:33
|
作者
LACHOWICZ, M
PULVIRENTI, M
机构
[1] Dipartimento di Matematica Pura ed Applicata, Università dell'Aquila, L'Aquila
关键词
D O I
10.1007/BF00377981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of N spheres interacting through elastic collisions at a stochastic distance. In the limit N → ∞, for a suitable rescaling of the interaction parameters, we prove that the one-particle distribution function converges to a local Maxwellian, whose gross density, velocity, and temperature satisfy the Euler equation. © 1990 Springer-Verlag.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条