Numerical propagation of dynamic cracks using X-FEM

被引:0
|
作者
Nistor, Ionel [1 ]
Pantale, Olivier [1 ]
Caperaa, Serge [1 ]
机构
[1] Ecole Natl Ingn Tarbes, Lab Genie Prod, 47 Av dAzereix,BP 1629, F-65016 Tarbes cedex, France
来源
关键词
partition of unity; extended finite element method; dynamic crack propagation; cohesive model;
D O I
10.3166/remn.16.183-198
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an application of the eXtended Finite Element Method for numerical modeling of the dynamic cracks propagation. The numerical cracks representation is adapted to the time-dependent mechanical formulation, using the Heaviside step function for completely cutted elements and the cohesive model for crack tips. In order to find the propagation parameters, a crack evolution model is proposed. The numerical implementation is achieved in new explicit FE module. A numerical example is proposed for proving the computational efficiency of this new module.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [1] Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel
    Prabel, B.
    Marie, S.
    Combescure, A.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (10) : 2984 - 3009
  • [2] Numerical analysis of crack propagation in concrete structures using X-FEM
    Meschke, Guenther
    Dumstoff, Peter
    Fleming, Wagner
    Jox, Stefan
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, 2006, : 157 - 166
  • [3] Stress intensity factor analysis of interface cracks using X-FEM
    Nagashima, T
    Omoto, Y
    Tani, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (08) : 1151 - 1173
  • [4] X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations
    Haboussa, D.
    Gregoire, D.
    Elguedj, T.
    Maigre, H.
    Combescure, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) : 618 - 636
  • [5] Optimization of a stabilized X-FEM formulation for frictional cracks
    Trolle, B.
    Gravouil, A.
    Baietto, M. -C.
    Nguyen-Tajan, T. M. L.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 59 : 18 - 27
  • [6] Numerical modelling of tectonic plates subduction using X-FEM
    Zlotnik, Sergio
    Diez, Pedro
    Fernandez, Manel
    Verges, Jaume
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) : 4283 - 4293
  • [7] 2D X-FEM simulation of dynamic brittle crack propagation
    Combescure, A.
    Gravouil, A.
    Maigre, H.
    Rethore, J.
    Gregoire, D.
    IUTAM SYMPOSIUM ON DISCRETIZATION METHODS FOR EVOLVING DISCONTINUITIES, 2007, 5 : 185 - 198
  • [8] Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM
    Crete, J. P.
    Longere, P.
    Cadou, J. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 275 : 204 - 233
  • [9] X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation
    Combescure, A.
    Gravouil, A.
    Gregoire, D.
    Rethore, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (05) : 309 - 318
  • [10] Stochastic fracture analysis of laminated composite plate with arbitrary cracks using X-FEM
    Achchhe Lal
    Shailesh P. Palekar
    International Journal of Mechanics and Materials in Design, 2017, 13 : 195 - 228