A DIFFERENTIAL INEQUALITY FOR THE POSITIVE ZEROS OF BESSEL-FUNCTIONS

被引:8
|
作者
IFANTIS, EK [1 ]
SIAFARIKAS, PD [1 ]
机构
[1] UNIV PATRAS,DEPT MATH,PATRAS,GREECE
关键词
DIFFERENTIAL INEQUALITIES; BOUNDS OF ZEROS OF BESSEL FUNCTIONS;
D O I
10.1016/0377-0427(92)90055-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the positive zeros j(nu,k), k = 1, 2,..., of the Bessel function J(nu)(x) of the first kind and order nu > -1, satisfy the differential inequality j(nu,k) dj(nu,k)/dnu > 1 + (1 + j(nu,k)2)1/2, nu > -1. This inequality improves the well-known inequality dj(nu,k)/dnu > 1, nu > -1, which is the source of a large number of lower and upper bounds for the zeros j(nu,k), k = 1, 2,... .
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条