A NOTE ON AN IDENTITY OF THE GAMMA FUNCTION AND STIRLING'S FORMULA

被引:0
|
作者
Li, Yuan-Chuan [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
关键词
convex function; Gamma function; Stirling's formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Short and elementary proofs of the well-known Stirling formula for the discrete Gamma function Gamma(n) have been given by several authors. In this note, a well-known identity and Stirling's formula for the continuous Gamma function Gamma(x) are deduced in a different and short way from a simple and elementary proposition.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 50 条
  • [1] Stirling's Formula and Its Extension for the Gamma Function
    Dutkay, Dorin Ervin
    Niculescu, Constantin P.
    Popovici, Florin
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (08): : 737 - 740
  • [2] A simple proof of Stirling's formula for the gamma function
    Jameson, G. J. O.
    [J]. MATHEMATICAL GAZETTE, 2015, 99 (544): : 68 - 74
  • [3] Note on Stirling's formula
    Corey, SA
    [J]. ANNALS OF MATHEMATICS, 1903, 5 : 185 - 186
  • [4] Exact Values of the Gamma Function from Stirling's Formula
    Kowalenko, Victor
    [J]. MATHEMATICS, 2020, 8 (07)
  • [5] A note on complete monotonicity of the remainder in stirling's formula
    Guo, S.
    Shen, Y.
    Li, X.
    [J]. MATHEMATICAL NOTES, 2015, 97 (5-6) : 961 - 964
  • [6] A note on complete monotonicity of the remainder in stirling’s formula
    S. Guo
    Y. Shen
    X. Li
    [J]. Mathematical Notes, 2015, 97 : 961 - 964
  • [7] A NOTE ON GAUTSCHI'S INEQUALITY AND APPLICATION TO WALLIS' AND STIRLING'S FORMULA
    Lukarevski, Martin
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 99 (113): : 121 - 124
  • [8] Exact Values of the Gamma Function from Stirling's Formula (vol 8, 1058, 2020)
    Kowalenko, Victor
    [J]. MATHEMATICS, 2023, 11 (09)
  • [9] On Stirling' s formula
    Michel, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (04): : 388 - 390
  • [10] NEW ASYMPTOTIC EXPANSION AND ERROR BOUND FOR STIRLING FORMULA OF RECIPROCAL GAMMA FUNCTION
    Pagola, Pedro J.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 957 - 965