On the singularities of the inverse to a meromorphic function of finite order

被引:82
|
作者
Bergweiler, Walter [1 ]
Eremenko, Alexandre [2 ]
机构
[1] TU Berlin, Fachbereich Math Sekr MA 8 2, D-10623 Berlin, Germany
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result implies the following theorem: Let f be a transcendental meromorphic function in the complex plane. If f has finite order rho, then every asymptotic value of f, except at most 2 rho of them, is a limit point of critical values of f. We give several applications of this theorem. For example we prove that if f is a transcendental meromorphic function then f' f(n) with n >= 1 takes every finite non-zero value infinitely often. This proves a conjecture of Hayman. The proof makes use of the iteration theory of meromorphic functions.
引用
收藏
页码:355 / 373
页数:19
相关论文
共 50 条