HEAT KERNELS ON LIE-GROUPS

被引:3
|
作者
MAGYAR, Z
机构
关键词
D O I
10.1016/0022-1236(90)90132-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Lie group with a fixed left invariant Haar measure and Λ be a right or left invariant, real, formally negative, elliptic differential operator of second order and without constant term. Then we call the "fundamental solution of the Cauchy problem" for the equation ∂u ∂t = Λu heat kernel. We prove that these heat kernels have most of the useful properties of their special case, the Gauss kernel (2 √πt)-n exp ( -∥x∥2 4t). © 1990.
引用
收藏
页码:351 / 390
页数:40
相关论文
共 50 条