MODEL SELECTION FOR MULTIVARIATE REGRESSION IN SMALL SAMPLES

被引:155
|
作者
BEDRICK, EJ [1 ]
TSAI, CL [1 ]
机构
[1] UNIV CALIF DAVIS,GRAD SCH MANAGEMENT,DAVIS,CA 95616
关键词
AIC; AIC(C); ICOMP; KULLBACK-LEIBLER INFORMATION; MALLOWS C-P;
D O I
10.2307/2533213
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a small-sample criterion (AIC(C)) for selecting multivariate regression models. This criterion adjusts the Akaike information criterion to be an exact unbiased estimator for the expected Kullback-Leibler information. A small-sample comparison shows that AIC(C) provides better model order choices than other available model selection methods. Data from an agricultural experiment are analyzed.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条