A Note On BCI-Algebras Of Order Five

被引:0
|
作者
Nisar, Farhat [1 ]
Bhatti, Shaban Ali [2 ]
机构
[1] Queen Mary Coll, Dept Math, Lahore, Pakistan
[2] Univ Punjab, Dept Math, Lahore, Pakistan
关键词
BCI-algebras; BCI-algebras of order five;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [2], it was shown that the number of proper BCI-algebras of order five regarding isomorphic BCI-algebras as equal are 70. In this note we investigated that the number of proper BCI-algebras of order five is 31 instead of 70.
引用
收藏
页码:15 / 37
页数:23
相关论文
共 50 条
  • [1] A Note On BCI-Algebras Of Order Six
    Nisar, Farhat
    Bhatti, Shaban Ali
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2006, 38 : 45 - 54
  • [2] A Note on Theta Pairs for BCI-algebras
    Soleimani, Rasoul
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (02): : 337 - 352
  • [3] (SEMI)PRIME BCI-ALGEBRAS: A CLASS OF BCI-ALGEBRAS
    Najafi, A.
    Saeid, A. Borumand
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (03): : 75 - 88
  • [4] A NOTE ON f-DERIVATIONS OF BCI-ALGEBRAS
    Javed, Malik Anjum
    Aslam, Muhammad
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (03): : 321 - 331
  • [5] Periodic BCI-algebras and Subgroups of Adjoint Monoids of BCI-algebras
    Wenping Huang
    Dajun Sun
    [J]. Semigroup Forum, 1998, 57 : 315 - 320
  • [6] Periodic BCI-algebras and subgroups of adjoint monoids of BCI-algebras
    Huang, WP
    Sun, DJ
    [J]. SEMIGROUP FORUM, 1998, 57 (03) : 315 - 320
  • [7] CENTRALIZERS OF BCI-ALGEBRAS
    Najafi, A.
    Saeid, A. Borumand
    Eslami, E.
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 407 - 425
  • [8] On derivations of BCI-algebras
    Jun, YB
    Xin, XL
    [J]. INFORMATION SCIENCES, 2004, 159 (3-4) : 167 - 176
  • [9] On topological BCI-algebras
    Jun, YB
    Xin, XL
    Lee, DS
    [J]. INFORMATION SCIENCES, 1999, 116 (2-4) : 253 - 261
  • [10] A Structure of BCI-Algebras
    Chajda, Ivan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (10) : 3391 - 3396