Design and implementation of fractional order (PID mu)-D-lambda controller for thermal process using stability boundary locus

被引:2
|
作者
Sreeraj, P. V. [1 ]
Kumar, J. Satheesh [1 ]
机构
[1] Karunya Univ, Dept Elect & Instrumentat, Coimbatore, Tamil Nadu, India
关键词
fractional calculus; fractional order (PID mu)-D-lambda controller; stability boundary locus; system identification; controller modelling;
D O I
10.1504/IJMIC.2015.067713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional order control is a new technique that uses fractional order calculus in the control applications. By introducing the fractional terms in basic control equations, we can achieve more satisfactory results with high precision in the system response, like less overshoot, reduced settling time, less steady state error, etc. It gives better control over the operating region with the help of fractional terms. Initially, the range of system stability is determined based on a novel graphical method, stability boundary locus. This method is used for tuning the fractional order controller parameters, K-p, K-i and K-d for the specified gain and phase margins. Stability of the system with controller is checked based on bode plot. This novel graphical method, stability boundary locus, in frequency domain uses less mathematical calculations and gives an idea about the system stability regions. Using this method, the gain and phase margin specification can be attained very easily without complex numerical analysis.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 50 条
  • [1] Self-tuning fractional order (PID mu)-D-lambda controller based on extremum seeking approach
    Necaibia, Ammar
    Ladaci, Samir
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2014, 8 (02) : 99 - 121
  • [2] AUTOTUNING METHOD FOR (PID mu)-D-lambda CONTROLLERS DESIGN
    Caponetto, Riccardo
    Dongola, Giovanni
    Pappalardo, Fulvio
    Tomasello, Vincenzo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (10): : 4043 - 4055
  • [3] Design of PID controller for Inverted Pendulum using Stability Boundary Locus
    Hanwate, Sandeep D.
    Hote, Yogesh V.
    2014 Annual IEEE India Conference (INDICON), 2014,
  • [4] PID Controller Design Based on Second Order Model Approximation by Using Stability Boundary Locus Fitting
    Deniz, Furkan Nur
    Alagoz, Baris Baykant
    Tan, Nusret
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 827 - 831
  • [5] Design of Fractional Order PID Controller for a SOPDT process model
    Kapoor, Sheetal
    Chaturvedi, Mayank
    Juneja, Pradeep K.
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 215 - 218
  • [6] DESIGN AND IMPLEMENTATION OF FRACTIONAL ORDER PID CONTROLLER FOR AEROFIN CONTROL SYSTEM
    Kadiyala, Venu Kishore
    Jatoth, Ravi Kumar
    Pothalaiah, Sake
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 695 - +
  • [7] PID Controller Design for Controlling Integrating Processes with Dead Time using Generalized Stability Boundary Locus
    Atic, Serdal
    Cokmez, Erdal
    Peker, Fuat
    Kaya, Ibrahim
    IFAC PAPERSONLINE, 2018, 51 (04): : 924 - 929
  • [8] Chaotic Whale Optimized Fractional Order PID Controller Design for Desalination Process
    Kavin, F.
    Senthilkumar, R.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 2789 - 2806
  • [9] Fractional Order PID Controller Design for Multivariable Systems using TLBO
    Bhookya, Jailsingh
    Jatoth, Ravi Kumar
    CHEMICAL PRODUCT AND PROCESS MODELING, 2020, 15 (02):
  • [10] Fractional-order PID Controller Design using PSO and GA
    Nasir, Mohannad
    Khadraoui, Sofiane
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 192 - 197