PERFECT KAPPA-NORMALITY OF PRODUCT-SPACES

被引:2
|
作者
OHTA, H
SAKAI, M
TAMANO, KI
机构
[1] KANAGAWA UNIV,DEPT MATH,YOKOHAMA 221,JAPAN
[2] YOKOHAMA NATL UNIV,FAC ENGN,YOKOHAMA 240,JAPAN
关键词
PERFECTLY KAPPA-NORMAL; PERFECTLY NORMAL; KLEBANOV SPACE; LASNEV SPACE; SIGMA-SPACE; PRODUCT;
D O I
10.1111/j.1749-6632.1993.tb52530.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A space X is called perfectly kappa-normal (respectively, Klebanov) if the closure of every open set (respectively, every union of zero-sets) in X is a zero-set. It is proved: The product of infinitely many Lasnev spaces need not be perfectly kappa-normal, in particular, S(omega(1))(2) x D-omega 1 is not perfectly kappa-normal; a locally compact, paracompact space Y is Klebanov if and only if X x Y is perfectly kappa-normal for every Lasnev space X; if X x Y is perfectly kappa-normal for every paracompact sigma-space X, then Y is perfectly normal. Properties of a Klebanov space are also studied.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条