A NOTE ON BOCHNER TYPE THEOREMS FOR COMPLETE MANIFOLDS

被引:15
|
作者
BERARD, P
机构
[1] Institut Fourier, Université de Grenoble I, St Martin D'hères Cedex, 38402
关键词
D O I
10.1007/BF02567924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we give an extension of Bochner's vanishing theorem to complete manifolds; this generalizes earlier results of J. Dodziuk, K.D. Elworthy and S. Rosenberg. © 1990 Springer-Verlag.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [1] GENERALIZED BOCHNER THEOREMS AND THE SPECTRUM OF COMPLETE MANIFOLDS
    ELWORTHY, KD
    ROSENBERG, S
    ACTA APPLICANDAE MATHEMATICAE, 1988, 12 (01) : 1 - 33
  • [2] Tachibana-type theorems on complete manifolds
    Colombo, Giulio
    Mariani, Marco
    Rigoli, Marco
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (02) : 1033 - 1083
  • [3] New Bochner type theorems
    Xiaoyang Chen
    Fei Han
    Mathematische Annalen, 2024, 388 : 3757 - 3783
  • [4] New Bochner type theorems
    Chen, Xiaoyang
    Han, Fei
    MATHEMATISCHE ANNALEN, 2024, 388 (04) : 3757 - 3783
  • [5] STRUCTURE THEOREMS FOR COMPLETE KAHLER-MANIFOLDS AND APPLICATIONS TO LEFSCHETZ TYPE THEOREMS
    NAPIER, T
    RAMACHANDRAN, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (05) : 809 - 851
  • [6] Liouville-type Theorems for Subharmonic Functions on Complete Manifolds
    沈一兵
    ActaMathematicaSinica, 1991, (04) : 375 - 382
  • [7] Liouville Type Theorems in the Theory of Mappings of Complete Riemannian Manifolds
    Aleksandrova I.A.
    Mikeš J.
    Stepanov S.E.
    Tsyganok I.I.
    Journal of Mathematical Sciences, 2017, 221 (6) : 737 - 744
  • [8] LLARULL TYPE THEOREMS ON COMPLETE MANIFOLDS WITH POSITIVE SCALAR CURVATURE
    Hao, Tianze
    Shi, Yuguang
    Sun, Yukai
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [9] Liouville-type Theorems for Subharmonic Functions on Complete Manifolds
    沈一兵
    Acta Mathematica Sinica,English Series, 1991, (04) : 375 - 382
  • [10] REMARKS ON LIOUVILLE-TYPE THEOREMS ON COMPLETE NONCOMPACT FINSLER MANIFOLDS
    Yin, Songting
    Zhang, Pan
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2018, 59 (02): : 255 - 264