The Stefan law and non linear electrodynamics

被引:0
|
作者
Kwal, B
Solomon, J
机构
来源
关键词
D O I
10.1051/jphysrad:0193800905020500
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:205 / 208
页数:4
相关论文
共 50 条
  • [1] The stationary Stefan problem with convection governed by a non-linear Darcy's law
    Boukrouche, M
    Lukaszewicz, G
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (07) : 563 - 585
  • [2] Non-linear electrodynamics in cosmology
    Novello, M
    Bergliaffa, SEP
    [J]. COSMOLOGY AND GRAVITATION, 2005, 782 : 306 - 317
  • [3] NON-LINEAR APPROACH TO ELECTRODYNAMICS
    RIGHI, R
    VENTURI, G
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (01) : 63 - 82
  • [4] TESTABILITY OF NON-LINEAR ELECTRODYNAMICS
    GRASSISTRINI, AM
    STRINI, G
    TAGLIAFERRI, G
    [J]. PHYSICAL REVIEW D, 1979, 19 (08): : 2330 - 2335
  • [5] A study of generalized second law of thermodynamics in magnetic universe in the light of non-linear electrodynamics
    Bandyopadhyay, Tanwi
    Debnath, Ujjal
    [J]. PHYSICS LETTERS B, 2011, 704 (03) : 95 - 101
  • [6] Light propagation in non-linear electrodynamics
    De Lorenci, VA
    Klippert, R
    Novello, M
    Salim, JM
    [J]. PHYSICS LETTERS B, 2000, 482 (1-3) : 134 - 140
  • [7] The Goldstone theorem in non-linear electrodynamics
    Escobar, C. A.
    Urrutia, L. F.
    [J]. EPL, 2014, 106 (03)
  • [8] Inflation driven by non-linear electrodynamics
    H. B. Benaoum
    Genly Leon
    A. Övgün
    H. Quevedo
    [J]. The European Physical Journal C, 83
  • [9] CONVEXITY AND HYPERBOLICITY IN NON-LINEAR ELECTRODYNAMICS
    BOILLAT, G
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (05): : 259 - 261
  • [10] Non-equilibrium Stefan-Boltzmann law
    Perez-Madrid, Agustin
    Miguel Rubi, J.
    Lapas, Luciano C.
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2010, 35 (03) : 279 - 288