Model Checking CSL for Markov Population Models

被引:2
|
作者
Spieler, David [1 ]
Hahn, Ernst Moritz [2 ]
Zhang, Lijun [2 ]
机构
[1] Saarland Univ, Dept Comp Sci, Modeling & Simulat Grp, Saarbrucken, Germany
[2] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.4204/EPTCS.154.7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Markov population models (MPMs) are a widely used modelling formalism in the area of computational biology and related areas. The semantics of a MPM is an infinite-state continuous-time Markov chain. In this paper, we use the established continuous stochastic logic (CSL) to express properties of Markov population models. This allows us to express important measures of biological systems, such as probabilistic reachability, survivability, oscillations, switching times between attractor regions, and various others. Because of the infinite state space, available analysis techniques only apply to a very restricted subset of CSL properties. We present a full algorithm for model checking CSL for MPMs, and provide experimental evidence showing that our method is effective.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 50 条
  • [1] Model checking Markov population models by stochastic approximations
    Bortolussi, Luca
    Lanciani, Roberta
    Nenzi, Laura
    [J]. INFORMATION AND COMPUTATION, 2018, 262 : 189 - 220
  • [2] Model checking conditional CSL for continuous-time Markov chains
    Gao, Yang
    Xu, Ming
    Zhan, Naijun
    Zhang, Lijun
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (1-2) : 44 - 50
  • [3] CSL model checking algorithms for infinite-state structured Markov chains
    Remke, Anne
    Haverkort, Boudewijn R.
    [J]. FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS, 2007, 4763 : 336 - +
  • [4] Model Checking for Hidden Markov Models
    Buckby, Jodie
    Wang, Ting
    Zhuang, Jiancang
    Obara, Kazushige
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (04) : 859 - 874
  • [5] Logic and model checking for hidden Markov models
    Zhang, LJ
    Hermanns, H
    Jansen, DN
    [J]. FORMAL TECHNIQUES FOR NETWORKED AND DISTRIBUTED SYSTEMS - FORTE 2005, 2005, 3731 : 98 - 112
  • [6] CSL model checking for the GreatSPN tool
    D'Aprile, D
    Donatelli, S
    Sproston, J
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2004, PROCEEDINGS, 2004, 3280 : 543 - 552
  • [7] CSL model checking algorithms for QBDs
    Remke, Anne
    Haverkort, Boudewijn R.
    Cloth, Lucia
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 382 (01) : 24 - 41
  • [8] Efficient Checking of Individual Rewards Properties in Markov Population Models
    Bortolussi, Luca
    Hillston, Jane
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (194): : 32 - 47
  • [9] Model Checking Constrained Markov Reward Models with Uncertainties
    Bacci, Giovanni
    Hansen, Mikkel
    Larsen, Kim Guldstrand
    [J]. QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2019), 2019, 11785 : 37 - 51
  • [10] Robust Model Checking with Imprecise Markov Reward Models
    Termine, Alberto
    Antonucci, Alessandro
    Facchini, Alessandro
    Primiero, Giuseppe
    [J]. PROCEEDINGS OF THE TWELVETH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2021, 147 : 299 - 309