FLUCTUATIONS OF SPATIAL BRANCHING-PROCESSES WITH MEAN-FIELD INTERACTION

被引:4
|
作者
CHAUVIN, B
OLIVARESRIEUMONT, P
ROUAULT, A
机构
[1] UNIV LA HABANA, DEPT CYBERNET & MATEMAT, HAVANA, CUBA
[2] UNIV PARIS 11, CNRS, UA 743, F-91405 ORSAY, FRANCE
关键词
BRANCHING BROWNIAN MOTION; PARTICLE SYSTEMS; FLUCTUATIONS; MEAN FIELD; SOBOLEV SPACES;
D O I
10.2307/1427672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching Brownian motion on R starting with n particles of mass 1/n, with interactive branching dynamics. The parameters are unscaled, but depend on the present state of the measure-valued process. For this mean-field model, which is a generalization of Chauvin and Rouault (1990) and Nappo and Orlandi (1988), we prove a propagation of chaos and a fluctuation theorem in D([0, T]; W-5).
引用
收藏
页码:716 / 732
页数:17
相关论文
共 50 条