VERTEX OPERATORS AND HALL-LITTLEWOOD SYMMETRICAL FUNCTIONS

被引:102
|
作者
JING, NH
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
[2] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
基金
美国国家科学基金会;
关键词
D O I
10.1016/0001-8708(91)90072-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider vertex operators on space V with a parameter t. Their components form an associative algebra which is a generalization of the Clifford algebra. A distinguished orthogonal basis of V is proved to be the Hall-Littlewood symmetric functions. We show that Kostka-Foulkes polynomials (or certain Kazhdan-Lusztig polynomials for the affine Weyl group of type A) are matrix coefficients on the space V. We also obtain certain generating functions for the product of Hall-Littlewood functions and the Kostka-Foulkes polynomials. © 1991.
引用
收藏
页码:226 / 248
页数:23
相关论文
共 50 条