BOX SCHEMES ON QUADRILATERAL MESHES

被引:71
|
作者
SCHMIDT, T
机构
[1] Reinbek, D-21465
关键词
BOX METHOD; BOUNDARY VALUE PROBLEM; FINITE VOLUME METHOD; VARIATIONAL FORMULATION; STABILITY; ERROR BOUNDS;
D O I
10.1007/BF02238536
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Box Schemes on Quadrilateral Meshes, Box schemes (finite volume methods) are widely used in fluid-dynamics, especially for the solution of conservation laws. In this paper two box-schemes for elliptic equations are analysed with respect to quadrilateral meshes. Using a variational formulation, we gain stability theorems for two different box methods, namely the so-called diagonal boxes and the centre boxes. The analysis is based on an elementwise eigenvalue problem. Stability can only be guaranteed under additional assumptions on the geometry of the quadrilaterals. For the diagonal boxes unsuitable elements can lead to global instabilities. The centre boxes are more robust and differ not so much from the finite element approach. In the stable case, convergence results up to second order are proved with well-known techniques.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 50 条
  • [1] Residual distribution schemes on quadrilateral meshes
    Abgrall, R.
    Marpeau, F.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (01) : 131 - 175
  • [2] Residual Distribution Schemes on Quadrilateral Meshes
    R. Abgrall
    F. Marpeau
    [J]. Journal of Scientific Computing, 2007, 30 : 131 - 175
  • [3] High-order residual distribution schemes on quadrilateral meshes
    Villedieu, N.
    Quintino, T.
    Abgrall, R.
    Deconinck, H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1559 - 1566
  • [4] Numerical schemes for detonation front on curvature on unstructured quadrilateral meshes
    Cheng, Junxia
    [J]. Jisuan Wuli/Chinese Journal of Computational Physics, 2011, 28 (02): : 199 - 206
  • [5] Finite volume box schemes on triangular meshes
    Courbet, B
    Croisille, JP
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (05): : 631 - 649
  • [6] Subdivision Schemes for Quadrilateral Meshes with the Least Polar Artifact in Extraordinary Regions
    Ma, Yue
    Ma, Weiyin
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 127 - 139
  • [7] Quadrilateral Meshes for PSLGs
    Bishop, Christopher J.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (01) : 1 - 42
  • [8] QUADRILATERAL MESHES STRIPIFICATION
    Vanecek, Petr
    Svitak, Radek
    Kolingerova, Ivana
    Skala, Vaclav
    [J]. ALGORITMY 2005: 17TH CONFERENCE ON SCIENTIFIC COMPUTING, PROCEEDINGS, 2005, : 300 - 308
  • [9] Parameterization of quadrilateral meshes
    Liu, Li
    Zhang, CaiMing
    Cheng, Frank
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 17 - +
  • [10] Quadrilateral Meshes for PSLGs
    Christopher J. Bishop
    [J]. Discrete & Computational Geometry, 2016, 56 : 1 - 42