WHITNEY MAPS FOR SPACES OF EMBEDDING HYPERSURFACES

被引:0
|
作者
RADUL, TN
机构
关键词
D O I
10.1007/BF01209617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of Whitney maps is proved, and it is also shown that if X is a metrizable continuum, the Whitney map will be a trivial fibering with its own Hilbert cube.
引用
收藏
页码:960 / 964
页数:5
相关论文
共 50 条
  • [1] SPACES OF WHITNEY MAPS
    ILLANES, A
    PACIFIC JOURNAL OF MATHEMATICS, 1989, 139 (01) : 67 - 77
  • [2] Spaces of maps into topological group with the Whitney topology
    Banakh, Taras
    Mine, Kotaro
    Sakai, Katsuro
    Yagasaki, Tatsuhiko
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (06) : 1110 - 1117
  • [3] Whitney preserving maps onto decomposition spaces
    Espinoza, Benjamin
    Topology Proceedings, Vol 29, No 1, 2005, 2005, 29 (01): : 115 - 125
  • [4] DOUBLING MEASURES AND NONQUASISYMMETRIC MAPS ON WHITNEY MODIFICATION SETS IN EUCLIDEAN SPACES
    Wang, Xiaohua
    Wen, Shengyou
    Wen, Zhixiong
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1291 - 1300
  • [5] EXTENDING WHITNEY MAPS
    WARD, LE
    PACIFIC JOURNAL OF MATHEMATICS, 1981, 93 (02) : 465 - 469
  • [6] The embedding theorems of Whitney and Nash
    Seshadri H.
    Verma K.
    Resonance, 2016, 21 (9) : 815 - 826
  • [7] A note on Whitney embedding theorem
    Ghanwat, Abhijeet
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1281 - 1284
  • [8] Gauging in Whitney spaces
    Kettunen, L
    Forsman, K
    Bossavit, A
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1466 - 1469
  • [9] Whitney maps and generalized continua
    Fernandez-Bayort, Tomas
    Quintero, Antonio
    TOPOLOGY AND ITS APPLICATIONS, 2023, 338
  • [10] Weakly Whitney preserving maps
    Espinoza, Benjamin
    Matsuhashi, Eiichi
    TOPOLOGY AND ITS APPLICATIONS, 2019, 262 : 90 - 108