STOCHASTICITY THRESHOLD FOR CLASSICAL HAMILTONIAN-SYSTEMS

被引:0
|
作者
FRASCA, M
机构
[1] Roma, 00176, Via Erasmo Gattamelata
关键词
D O I
10.1007/BF02728349
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of Hamiltonian systems that show chaoticity and give a recipe to get their stochasticity threshold. When the multiple time scale perturbation analysis (MTSA) is applied, a set of differential equations is obtained for corrections to first order in the perturbation strength. The stability analysis of them gives an infinite set of saddle points for the amplitude and phase of motion and a time scale on which the information on initial conditions goes lost. The comparison with the proper orbital time gives the stochasticity threshold. The mechanism is applied to a modified version of the well-known Henon-Heiles model.
引用
收藏
页码:1055 / 1058
页数:4
相关论文
共 50 条
  • [1] THRESHOLD OF GLOBAL STOCHASTICITY AND UNIVERSALITY IN HAMILTONIAN-SYSTEMS
    ESCANDE, DF
    MOHAMEDBENKADDA, MS
    DOVEIL, F
    [J]. PHYSICS LETTERS A, 1984, 101 (07) : 309 - 313
  • [2] STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS
    ESCANDE, DF
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4): : 165 - 261
  • [3] STOCHASTICITY AND TRANSPORT IN HAMILTONIAN-SYSTEMS
    MACKAY, RS
    MEISS, JD
    PERCIVAL, IC
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (09) : 697 - 700
  • [4] STOCHASTICITY AND RECONNECTION IN HAMILTONIAN-SYSTEMS
    HOWARD, JE
    HOHS, SM
    [J]. PHYSICAL REVIEW A, 1984, 29 (01): : 418 - 421
  • [5] STRONG STOCHASTICITY THRESHOLD IN NONLINEAR LARGE HAMILTONIAN-SYSTEMS - EFFECT ON MIXING TIMES
    PETTINI, M
    CERRUTISOLA, M
    [J]. PHYSICAL REVIEW A, 1991, 44 (02): : 975 - 987
  • [6] LARGE-SCALE STOCHASTICITY IN HAMILTONIAN-SYSTEMS
    ESCANDE, DF
    [J]. PHYSICA SCRIPTA, 1982, T2 : 126 - 141
  • [7] TRANSITION TO STOCHASTICITY IN HAMILTONIAN-SYSTEMS - SOME NUMERICAL RESULTS
    MALAGOLI, A
    PALADIN, G
    VULPIANI, A
    [J]. PHYSICAL REVIEW A, 1986, 34 (02): : 1550 - 1555
  • [8] STOCHASTICITY IN THE SPECTRA OF SOME HAMILTONIAN-SYSTEMS WITH A DISCRETE SYMMETRY
    BOLOTIN, YL
    VINITSKII, SI
    GONCHAR, VY
    MARKOVSKY, BL
    TARASOV, VN
    CHEKANOV, NA
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 52 (02): : 375 - 382
  • [9] THE INTRINSIC STOCHASTICITY OF NEAR-INTEGRABLE HAMILTONIAN-SYSTEMS
    KRLIN, L
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1989, 37 (09): : 735 - 760
  • [10] TRANSITION TO STOCHASTICITY OF 2 DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS
    ESCANDE, DF
    DOVEIL, F
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 987 - 987