INTERFACIAL PHENOMENA AND HEAT TRANSFER IN PROTON EXCHANGE MEMBRANE FUEL CELLS

被引:40
|
作者
Liu, Jia Xing [1 ,2 ]
Guo, Hang [1 ,2 ,3 ]
Ye, Fang [1 ,2 ]
Qiu, De Cai [1 ,2 ]
Ma, Chong Fang [1 ,2 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, MOE, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
review; proton exchange membrane fuel cell; interfacial phenomena; water transport; heat transfer;
D O I
10.1615/InterfacPhenomHeatTransfer.2016014779
中图分类号
O414.1 [热力学];
学科分类号
摘要
Water transport and heat transfer are two critical issues for proton exchange membrane fuel cell (PEMFC) commercialization. Proper water and heat management ensure a sufficient reactant transport to reaction sites and high operating temperature, which requires good understanding of water and heat transport in PEMFCs. In this paper, previous studies about interfacial phenomena related to water transport and heat transfer in PEMFCs are reviewed. The interfacial phenomena in different components are discussed in detail. Experimental works have been conducted to visually observe the liquid water interface in PEMFCs. However, difficulty still remains for investigations of interfacial phenomena. Modeling works on interfacial phenomena in PEMFCs involve lattice Boltzmann, pore network, level set, and volume-of-fluid approaches. Different approaches have been applied for different components of PEMFC, and the liquid water interface can be located in all these approaches. Heat transfer in PEMFCs is also introduced. Various heat sources result in diverse heat transfer phenomena and nonuniform temperature distribution in PEMFCs. The components significantly influence heat transfer in PEMFCs. Coupled heat and water transport is a major issue for PEMFC management, and the heat pipe effect has been identified as an important mechanism of coupled heat and water transport. Cooling is important for PEMFC heat management, especially for PEMFCs with a large active area, high temperature, and stack.
引用
收藏
页码:259 / 301
页数:43
相关论文
共 50 条
  • [1] Research progress of heat transfer inside proton exchange membrane fuel cells
    Wang, Qianqian
    Li, Bing
    Yang, Daijun
    Dai, Haifeng
    Zheng, Jim P.
    Ming, Pingwen
    Zhang, Cunman
    JOURNAL OF POWER SOURCES, 2021, 492
  • [2] Transport phenomena analysis in proton exchange membrane fuel cells
    Liu, HT
    Zhou, TH
    Cheng, P
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (12): : 1363 - 1379
  • [3] A numerical investigation of gas flow and heat transfer in proton exchange membrane fuel cells
    Yuan, JL
    Rokni, M
    Sundén, B
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2003, 44 (03) : 255 - 280
  • [4] Heat sources in proton exchange membrane (PEM) fuel cells
    Ramousse, Julien
    Lottin, Olivier
    Didierjean, Sophie
    Maillet, Denis
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 435 - 441
  • [5] Impact of Shutdown Procedures on Recovery Phenomena of Proton Exchange Membrane Fuel Cells
    Pivac, I.
    Barbir, F.
    FUEL CELLS, 2020, 20 (02) : 185 - 195
  • [6] Dynamic Phenomena Coupling Analysis and Modeling of Proton Exchange Membrane Fuel Cells
    Zhou, Daming
    Gao, Fei
    Breaz, Elena
    Ravey, Alexandre
    Miraoui, Abdellatif
    Zhang, Ke
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2016, 31 (04) : 1399 - 1412
  • [7] Heat and mass transfer of a planar membrane humidifier for proton exchange membrane fuel cell
    Chen, Chen-Yu
    Yan, Wei-Mon
    Lai, Chi-Nan
    Su, Jian-Hao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 601 - 608
  • [8] Heat and mass transfer and two phase flow in hydrogen proton exchange membrane fuel cells and direct methanol fuel cells
    Guo, H
    Ma, CF
    Wang, MH
    Yu, J
    Liu, X
    Ye, F
    Wang, CY
    FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, 2003, : 471 - 476
  • [9] Proton exchange membrane fuel cells
    Vishnyakov, V. M.
    VACUUM, 2006, 80 (10) : 1053 - 1065
  • [10] Simulation of the water and heat management in proton exchange membrane fuel cells
    Matamoros, Luis
    Brueggemann, Dieter
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 203 - 213