On the zeros of some polynomials with combinatorial coefficients

被引:0
|
作者
Shattuck, Mark [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
来源
关键词
zeros of polynomials; Motzkin number; Schroder number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two general classes of second-order linear recurrent sequences and the polynomials whose coefficients belong to a sequence in either of these classes. We show for each such sequence {a(i)}(i >= 0) that the polynomial f(x) = Sigma(n)(i=0) a(i)x(i) always has the smallest possible number of real zeros, that is, none when the degree is even and one when the degree is odd. Among the sequences then for which this is true are the Motzkin, Riordan, Schroder, and Delannoy numbers.
引用
收藏
页码:93 / 101
页数:9
相关论文
共 50 条
  • [1] Some properties of zeros of polynomials with vanishing coefficients
    Bialas, Stanislaw
    Gora, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 1976 - 1991
  • [2] SOME RESULTS CONCERNING THE ZEROS AND COEFFICIENTS OF POLYNOMIALS
    Baba, S. A.
    Liman, A.
    Shah, W. M.
    MATEMATICKI VESNIK, 2012, 64 (01): : 73 - 78
  • [3] Zeros of polynomials with random coefficients
    Pritsker, Igor E.
    Yeager, Aaron M.
    JOURNAL OF APPROXIMATION THEORY, 2015, 189 : 88 - 100
  • [4] Polynomials with integer coefficients and their zeros
    Igor E. Pritsker
    Journal of Mathematical Sciences, 2012, 183 (6) : 810 - 822
  • [5] On the Zeros of Polynomials with Restricted Coefficients
    Zargar, B. A.
    Gulzar, M. H.
    Ali, M.
    ANNALES MATHEMATICAE SILESIANAE, 2023, 37 (02) : 306 - 314
  • [6] Zeros of Polynomials with Unit Coefficients
    Stong, Richard
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (05): : 466 - 467
  • [7] On Zeros of Polynomials with Restricted Coefficients
    Rasool, Tawheeda
    Ahmad, Irshad
    Liman, Ab
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (04): : 807 - 816
  • [8] On the zeros of polynomials with restricted coefficients
    Borwein, P
    Erdelyi, T
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (04) : 667 - 675
  • [10] DISTRIBUTION OF ZEROS OF POLYNOMIALS WITH POSITIVE COEFFICIENTS
    Bergweiler, Walter
    Eremenko, Alexandre
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 375 - 383