首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
THE LIMIT SHAPE OF CONVEX LATTICE POLYGONS AND RELATED TOPICS
被引:23
|
作者
:
VERSHIK, AM
论文数:
0
引用数:
0
h-index:
0
机构:
RUSSIAN ACAD SCI,INST MATH,MOSCOW,RUSSIA
RUSSIAN ACAD SCI,INST MATH,MOSCOW,RUSSIA
VERSHIK, AM
[
1
]
机构
:
[1]
RUSSIAN ACAD SCI,INST MATH,MOSCOW,RUSSIA
来源
:
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
|
1994年
/ 28卷
/ 01期
关键词
:
D O I
:
10.1007/BF01079006
中图分类号
:
O29 [应用数学];
学科分类号
:
070104 ;
摘要
:
[No abstract available]
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
[1]
THE LIMIT SHAPE OF CONVEX LATTICE POLYGONS
BARANY, I
论文数:
0
引用数:
0
h-index:
0
机构:
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, 1364
BARANY, I
DISCRETE & COMPUTATIONAL GEOMETRY,
1995,
13
(3-4)
: 279
-
295
[2]
Limit shape of convex lattice polygons with minimal perimeter
Prodromou, MN
论文数:
0
引用数:
0
h-index:
0
机构:
UCL, Dept Math, London WC1E 6BT, England
UCL, Dept Math, London WC1E 6BT, England
Prodromou, MN
DISCRETE MATHEMATICS,
2005,
300
(1-3)
: 139
-
151
[3]
Limit shape of optimal convex lattice polygons in the sense of different metrics
Stojakovic, M
论文数:
0
引用数:
0
h-index:
0
机构:
ETH Zentrum, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
ETH Zentrum, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
Stojakovic, M
DISCRETE MATHEMATICS,
2003,
271
(1-3)
: 235
-
249
[4]
Limit shape of convex lattice polygons having the minimal L∞ diameter wrt the number of their vertices
Zunic, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Novi Sad, Fac Engn, YU-21000 Novi Sad, Yugoslavia
Univ Novi Sad, Fac Engn, YU-21000 Novi Sad, Yugoslavia
Zunic, J
DISCRETE MATHEMATICS,
1998,
187
(1-3)
: 245
-
254
[5]
CONVEX LATTICE POLYGONS
WILLS, JM
论文数:
0
引用数:
0
h-index:
0
WILLS, JM
COMMENTARII MATHEMATICI HELVETICI,
1973,
48
(02)
: 188
-
194
[6]
UNIVERSALITY OF THE LIMIT SHAPE OF CONVEX LATTICE POLYGONAL LINES
Bogachev, Leonid V.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Bogachev, Leonid V.
Zarbaliev, Sakhavat M.
论文数:
0
引用数:
0
h-index:
0
机构:
Int Inst Earthquake Predict Theory & Math Geophys, Moscow 117997, Russia
Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
Zarbaliev, Sakhavat M.
ANNALS OF PROBABILITY,
2011,
39
(06):
: 2271
-
2317
[7]
An extremal result on convex lattice polygons
Alarcon, E
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Wisconsin, Dept Math, Eau Claire, WI 54702 USA
Univ Wisconsin, Dept Math, Eau Claire, WI 54702 USA
Alarcon, E
DISCRETE MATHEMATICS,
1998,
190
(1-3)
: 227
-
234
[8]
CONVEX LATTICE POLYGONS OF MINIMUM AREA
SIMPSON, RJ
论文数:
0
引用数:
0
h-index:
0
机构:
CURTIN UNIV TECHNOL,SCH MATH & STAT,PERTH,WA 6001,AUSTRALIA
CURTIN UNIV TECHNOL,SCH MATH & STAT,PERTH,WA 6001,AUSTRALIA
SIMPSON, RJ
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY,
1990,
42
(03)
: 353
-
367
[9]
Notes on optimal convex lattice polygons
Zunic, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Novi Sad, Fac Engn, YU-21000 Novi Sad, Yugoslavia
Univ Novi Sad, Fac Engn, YU-21000 Novi Sad, Yugoslavia
Zunic, J
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY,
1998,
30
: 377
-
385
[10]
Minkowski decomposition of convex lattice polygons
Emiris, Ioannis Z.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Univ Athens, Dept Informat & Telecommunicat, Athens, Greece
Natl Univ Athens, Dept Informat & Telecommunicat, Athens, Greece
Emiris, Ioannis Z.
Tsigaridas, Elias P.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Univ Athens, Dept Informat & Telecommunicat, Athens, Greece
Natl Univ Athens, Dept Informat & Telecommunicat, Athens, Greece
Tsigaridas, Elias P.
ALGEBRAIC GEOMETRY AND GEOMETRIC MODELING,
2006,
: 217
-
+
←
1
2
3
4
5
→