DETERMINATION OF SENSORLESS INPUT PARAMETERS OF SOLAR PANEL WITH ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) METHOD

被引:0
|
作者
Syafaruddin [1 ]
Abubakar, Muhammad Iqbal [1 ]
Soma, Hizkia Glorius [1 ]
Said, Sri Mawar [1 ]
Latief, Satriani [2 ]
机构
[1] Univ Hasanuddin, Dept Elect Engn, Jalan Poros Malino Km 6, Gowa 92171, Indonesia
[2] Univ Bosowa, Dept Architecture, Jalan Urip Sumoharjo Km 4, Makassar 90231, Indonesia
关键词
ANFIS network; Irradiance; Cell temperature; Solar cell; Training and validation process;
D O I
10.24507/ijicic.14.06.2259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper aims to benefit the artificial neural network by means of the adaptive neuro-fuzzy inference system (ANFIS) method to determine the input parameters of solar panel without using any sensors. In this respect, the input parameters are the irradiance in W/m(2) and the cell temperature in degree Celsius. Normally, these two parameters are measured with pyranometer and temperature sensors which are expensive and giving the complexity of the solar panel systems. In this research, the parameters of irradiance and cell temperature are obtained with taking the voltage and current of one cell of solar panel as the input signals. These signals are given to ANFIS network through the training and validation process. As the ANFIS network is the multi input and single output network, there will be two developed ANFIS networks which indicate the estimated irradiance and cell temperature. The ANFIS networks are confirmed with the sum of square error regarding the type of membership function and the number of nodes structure.
引用
收藏
页码:2259 / 2271
页数:13
相关论文
共 50 条
  • [1] Application of adaptive neuro-fuzzy inference system (ANFIS) for modeling solar still productivity
    Mashaly, Ahmed F.
    Alazba, A. A.
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2017, 66 (06): : 367 - 380
  • [2] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134
  • [3] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190
  • [4] Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection
    Erman Çakıt
    Waldemar Karwowski
    Artificial Intelligence Review, 2017, 48 : 139 - 155
  • [5] Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection
    Cakit, Erman
    Karwowski, Waldemar
    ARTIFICIAL INTELLIGENCE REVIEW, 2017, 48 (02) : 139 - 155
  • [6] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [7] An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM
    Caydas, Ulas
    Hascalik, Ahmet
    Ekici, Sami
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6135 - 6139
  • [8] An Implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for Odor Source Localization
    Wang, Lingxiao
    Pang, Shuo
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4551 - 4558
  • [9] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [10] Adaptive Neuro-Fuzzy Inference System (ANFIS) in Modelling Breast Cancer Survival
    Hamdan, Hazlina
    Garibaldi, Jonathan M.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,