BATALIN-VILKOVISKY ANALYSIS FOR COVARIANT AND NONCOVARIANT ACTIONS

被引:3
|
作者
ORDONEZ, C [1 ]
PARIS, J [1 ]
PONS, JM [1 ]
TOLDRA, R [1 ]
机构
[1] UNIV BARCELONA,FAC FIS,DEPT ESTRUCTURA & CONSTITUENTS MAT,E-08028 BARCELONA,SPAIN
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 08期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.48.3818
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
引用
收藏
页码:3818 / 3825
页数:8
相关论文
共 50 条
  • [1] DEVELOPING THE COVARIANT BATALIN-VILKOVISKY APPROACH TO STRING THEORY
    HATA, H
    ZWIEBACH, B
    ANNALS OF PHYSICS, 1994, 229 (01) : 177 - 216
  • [2] BATALIN-VILKOVISKY ANALYSIS OF SUPERSYMMETRIC SYSTEMS
    BAULIEU, L
    BELLON, M
    OUVRY, S
    WALLET, JC
    PHYSICS LETTERS B, 1990, 252 (03) : 387 - 394
  • [3] GEOMETRY OF BATALIN-VILKOVISKY QUANTIZATION
    SCHWARZ, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (02) : 249 - 260
  • [4] ON THE GEOMETRY OF THE BATALIN-VILKOVISKY FORMALISM
    KHUDAVERDIAN, OM
    NERSESSIAN, AP
    MODERN PHYSICS LETTERS A, 1993, 8 (25) : 2377 - 2385
  • [5] Homotopy Batalin-Vilkovisky algebras
    Galvez-Carrillo, Imma
    Tonks, Andy
    Vallette, Bruno
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (03) : 539 - 602
  • [6] On the geometry of the Batalin-Vilkovisky formalism
    Lavrov, P. M.
    Radchenko, O. V.
    RUSSIAN PHYSICS JOURNAL, 2008, 51 (11) : 1144 - 1148
  • [7] Equivariant Batalin-Vilkovisky formalism
    Bonechi, F.
    Cattaneo, A. S.
    Qiu, J.
    Zabzine, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 154
  • [8] When Ext is a Batalin-Vilkovisky algebra
    Kowalzig, Niels
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (03) : 1080 - 1130
  • [9] Batalin-Vilkovisky integrals in finite dimensions
    Albert, C.
    Bleile, B.
    Froehlich, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (01)
  • [10] The geometry of variations in Batalin-Vilkovisky formalism
    Kiselev, Arthemy V.
    XXIST INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS21), 2013, 474