SYNTHESIS OF LTO NANORODS WITH AC/NANO-Si COMPOSITE AS ANODE MATERIAL FOR LITHIUM-ION BATTERIES

被引:0
|
作者
Zulfia, Anne [1 ]
Margaretha, Yohana Ruth [1 ]
Priyono, Bambang [1 ]
Subhan, Achmad [2 ]
机构
[1] Univ Indonesia, Fac Engn, Dept Met & Mat Engn, Kampus UI Depok, Depok 16424, Indonesia
[2] PUSPIPTEK, Indonesian Inst Sci LIPI, Ctr Res Phys, South Tangerang 15314, Indonesia
关键词
Activated carbon; Li2TiO3; Lithium-ion battery; Lithium titanate; Nano silicon;
D O I
10.14716/ijtech.v9i6.2444
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the synthesis of lithium titanate (LTO) composite with 3 wt% activated carbons (AC) and 10 wt%, 15 wt%, as well as 20 wt% of nano silicon (nano-Si) are carried out. LTO has zero-strain characteristics and has a long life cycle. However, its capacity is limited, and it has poor electrical conductivity. The addition of nano-Si aims to enhance its capacity, while the AC aims to provide a large specific surface area to increase electrical conductivity. The nanorod templates are made from titanium dioxide (TiO2), which is obtained from titanium (IV) butoxide using the sol-gel method. Nanorod structures are achieved by a hydrothermal process in a 10 M sodium hydroxide (NaOH) solution. However, needle-like structures are also observed, and the Li2TiO3 phase is finally formed. Battery performance is determined by CV, CD, and EIS tests. EIS results show that the highest electrical conductivity is found in LTO only; the CV test results show that the highest specific capacity is found in LTO-AC/15% nano-Si, at 140.7 mAh/g, as well as a charge-discharge (CD) capacity at a current rate of 0.2 to 20 C.
引用
收藏
页码:1225 / 1235
页数:11
相关论文
共 50 条
  • [1] Facile Synthesis of Nano-Si Modified Graphite Composite as Anode Material for Lithium Ion Batteries
    Hou Jiao
    Gong Bo-Lin
    Hou Chun-Ping
    Wang Bei-Ping
    Yang Dan
    Wang Xing-Wei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3455 - 3464
  • [2] Nano-Si/cellulose composites as anode materials for lithium-ion batteries
    Gomez-Camer, J. L.
    Morales, J.
    Sanchez, L.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) : A101 - A104
  • [3] A high capacity nano-Si composite anode material for lithium rechargeable batteries
    Li, H
    Huang, XJ
    Chen, LQ
    Wu, ZG
    Liang, Y
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (11) : 547 - 549
  • [4] Synthesis and electrochemical properties of nano-Si/C composite anodes for lithium-ion batteries
    Yuan, Li-Ye
    Lu, Chun-Xiang
    Lu, Xiao-Xuan
    Yuan, Shu-Xia
    Zhang, Meng
    Cao, Li-Juan
    Yang, Yu
    NEW CARBON MATERIALS, 2020, 38 (05) : 964 - 973
  • [5] Si/Cu composite as anode material for lithium-ion batteries
    Zeng, Hong
    He, Yawen
    Chamas, Mohamad
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [6] Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries
    Sun, Antao
    Zhong, Hui
    Zhou, Xiangyang
    Tang, Jingjing
    Jia, Ming
    Cheng, Fangyan
    Wang, Qian
    Yang, Juan
    APPLIED SURFACE SCIENCE, 2019, 470 : 454 - 461
  • [7] Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries
    Ngo, Duc Tung
    Le, Hang T. T.
    Pham, Xuan-Manh
    Park, Choong-Nyeon
    Park, Chan-Jin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (38) : 32790 - 32800
  • [8] High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries
    Ruhui Xu
    Keyu Zhang
    Runhong Wei
    Meimei Yuan
    Yenan Zhang
    Feng Liang
    Yaochun Yao
    Ionics, 2020, 26 : 1 - 11
  • [9] High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries
    Xu, Ruhui
    Zhang, Keyu
    Wei, Runhong
    Yuan, Meimei
    Zhang, Yenan
    Liang, Feng
    Yao, Yaochun
    IONICS, 2020, 26 (01) : 1 - 11
  • [10] Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries
    Ding Peng
    Xu You-Long
    Sun Xiao-Fei
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (02) : 293 - 297