A SHARP BOUND ON POSITIVE SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS

被引:2
|
作者
BOROSH, I
TREYBIG, LB
机构
关键词
LINEAR DIOPHANTINE EQUATIONS; POSITIVE INTEGRAL SOLUTIONS; MINORS; RANK; BOUND; SMITH NORMAL FORM; GROUP KNAPSACK;
D O I
10.1137/0613029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Ax = b be an m x n system of linear equations with rank m < n and integer coefficients. Denote by Y the maximum of the absolute values of the m x m minors of the augmented matrix (A, b). It is proved that if the system has an integral solution x = (x(i)) with each x(i) greater-than-or-equal-to 0, and either Ax = 0 has no such solution which is nontrivial or there is an m x (m + 1) submatrix A' of A with rank m such that A' y = 0 has a solution with positive integer components, then Ax = b has an integral solution with each 0 less-than-or-equal-to x(i) less-than-or-equal-to Y. The bound is sharp.
引用
收藏
页码:454 / 458
页数:5
相关论文
共 50 条
  • [1] SHARP BOUND FOR POSITIVE SOLUTIONS OF HOMOGENEOUS LINEAR DIOPHANTINE EQUATIONS
    BOROSH, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) : 19 - 21
  • [2] A SHARP BOUND FOR SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS
    BOROSH, I
    FLAHIVE, M
    RUBIN, D
    TREYBIG, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (04) : 844 - 846
  • [3] BOUNDS ON POSITIVE SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS
    BOROSH, I
    TREYBIG, LB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A61 - A61
  • [4] BOUNDS ON POSITIVE INTEGRAL SOLUTIONS OF LINEAR DIOPHANTINE EQUATIONS
    BOROSH, I
    TREYBIG, LB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (02) : 299 - 304
  • [5] A BOUND FOR THE MINIMAL POSITIVE INTEGER SOLUTIONS OF A LINEAR DIOPHANTINE EQUATION
    LAMBERT, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (02): : 39 - 40
  • [6] SHARP ESTIMATE FOR THE NUMBER OF SOLUTIONS OF A SYSTEM OF DIOPHANTINE EQUATIONS
    ARHIPOV, GI
    KARACUBA, AA
    CUBARIKOV, VN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1979, 13 (03): : 461 - 497
  • [7] Sparse Solutions of Linear Diophantine Equations
    Aliev, Iskander
    De Loera, Jesus A.
    Oertel, Timm
    O'Neill, Christopher
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 239 - 253
  • [8] Optical solutions for linear Diophantine equations
    Muntean, O.
    Oltean, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (11): : 1728 - 1734
  • [9] Positive integer solutions of certain diophantine equations
    Patel, Bijan Kumar
    Ray, Prasanta Kumar
    Sahukar, Manasi K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (01):
  • [10] Positive integer solutions of certain diophantine equations
    Bijan Kumar Patel
    Prasanta Kumar Ray
    Manasi K Sahukar
    Proceedings - Mathematical Sciences, 2018, 128