ON THE LIMIT POINTS OF DISCRETE SELECTION DYNAMICS

被引:60
|
作者
CABRALES, A
SOBEL, J
机构
[1] University of California, San Diego
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-0531(92)90043-H
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides an analog to the aggregate monotonicity condition introduced by Samuelson and Zhang [J. Econ. Theory, 1992] in a study of continuous dynamics. Our condition guarantees that limit points of discrete selection dynamics are rationalizable strategies. We show that the condition will be satisfied by the discrete replicator dynamic if the population does not change rapidly. These results reconcile the Samuelson-Zhang theorem, which implies that limit points of continuous replicator dynamics must be rationalizable, with an example of Dekel and Scotchmer [J. Econ. Theory, 1992], which shows that limit points of the discrete replicator dynamic may place positive probability on strictly dominated stategies. © 1992.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [1] Feature Selection at the Discrete Limit
    Zhang, Miao
    Ding, Chris
    Zhang, Ya
    Nie, Feiping
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1355 - 1361
  • [2] Singular perturbation with Limit points in the fast dynamics
    Stiefenhofer, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (05): : 730 - 758
  • [3] Singular perturbation with Limit points in the fast dynamics
    M. Stiefenhofer
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 730 - 758
  • [4] On series whose rearrangements possess discrete sets of limit points
    Witula, Roman
    Hetmaniok, Edyta
    Kaczmarek, Konrad
    JOURNAL OF APPLIED ANALYSIS, 2014, 20 (01) : 93 - 96
  • [5] SCALING LIMIT OF A DISCRETE PRION DYNAMICS MODEL
    Doumic, Marie
    Goudon, Thierry
    Lepoutre, Thomas
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2009, 7 (04) : 839 - 865
  • [6] SELECTION OF SAMPLING INTERVAL AND ACTION LIMIT FOR DISCRETE FEEDBACK ADJUSTMENT
    BOX, G
    LUCENO, A
    TECHNOMETRICS, 1994, 36 (04) : 369 - 378
  • [7] Special α-Limit Points and γ-Limit Points of a Dendrite Map
    Sun, Taixiang
    Tang, Yalin
    Su, Guangwang
    Xi, Hongjian
    Qin, Bin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (01) : 245 - 257
  • [8] On the stability of monotone discrete selection dynamics with inertia
    Dawid, H
    MATHEMATICAL SOCIAL SCIENCES, 1999, 37 (03) : 265 - 280
  • [9] Variational limit of a one dimensional discrete and statistically homogeneous system of material points
    Iosifescu, O
    Licht, C
    Michaille, G
    ASYMPTOTIC ANALYSIS, 2001, 28 (3-4) : 309 - 329
  • [10] EVOLUTIONARY SELECTION DYNAMICS IN GAMES - CONVERGENCE AND LIMIT PROPERTIES
    NACHBAR, JH
    INTERNATIONAL JOURNAL OF GAME THEORY, 1990, 19 (01) : 59 - 89