ELLIPTIC INTEGRALS AND LIMIT-CYCLES

被引:4
|
作者
URBINA, AM [1 ]
DELABARRA, ML [1 ]
DELABARRA, GL [1 ]
CANAS, M [1 ]
机构
[1] UNIV TECN FEDERICO SANTA MARIA, DEPT MATEMAT, CASILLA 110-V, VALPARAISO, CHILE
关键词
D O I
10.1017/S0004972700015641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using zeros of elliptic integrals we establish an upper bound for the number of limit cycles that emerge from the period annulus of the Hamiltonian X(H) in the system X(epsilon) = X(H) + epsilon(P, Q), where H = y2 + x4 and P, Q are polynomials in x, y, as a function of the degrees of P and Q. In particular, if (P, Q) = [GRAPHICS] with N = 2k + 1 or 2k + 2, this upper bound is k - 1.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条