POLYNOMIAL AND SPLINE APPROXIMATION BY QUADRATIC PROGRAMMING

被引:9
|
作者
AMOS, DE
SLATER, ML
机构
关键词
D O I
10.1145/363156.363163
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:379 / &
相关论文
共 50 条
  • [1] COPOSITIVE POLYNOMIAL AND SPLINE APPROXIMATION
    HU, YK
    LEVIATAN, D
    YU, XM
    JOURNAL OF APPROXIMATION THEORY, 1995, 80 (02) : 204 - 218
  • [2] On univariate and bivariate polynomial spline approximation
    Dagnino, C
    Demichelis, V
    Lamberti, P
    Pittaluga, G
    Sacripante, L
    ANALISI NUMERICA: METODI E SOFTWARE MATEMATICO, SUPPLEMENTO, 2000, 46 : 455 - 466
  • [3] Approximation Algorithms for Quadratic Programming
    Minyue Fu
    Zhi-Quan Luo
    Yinyu Ye
    Journal of Combinatorial Optimization, 1998, 2 : 29 - 50
  • [4] Approximation algorithms for quadratic programming
    Fu, MY
    Luo, ZQ
    Ye, YY
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1998, 2 (01) : 29 - 50
  • [5] POLYNOMIAL SOLVABILITY OF THE CONVEX QUADRATIC PROGRAMMING
    KOZLOV, MK
    TARASOV, SP
    KHACHIIAN, LG
    DOKLADY AKADEMII NAUK SSSR, 1979, 248 (05): : 1049 - 1051
  • [6] ON AN N-DIMENSIONAL QUADRATIC SPLINE APPROXIMATION
    LENARD, M
    JOURNAL OF APPROXIMATION THEORY, 1992, 68 (02) : 113 - 135
  • [7] On Implementation of Non-Polynomial Spline Approximation
    O. V. Belyakova
    Computational Mathematics and Mathematical Physics, 2019, 59 : 689 - 695
  • [8] On Implementation of Non-Polynomial Spline Approximation
    Belyakova, O. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (05) : 689 - 695
  • [9] A polynomial algorithm for the quadratic programming problem
    Bereznev, Valentin A.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2014, 29 (03) : 139 - 144
  • [10] Comment on “Approximation algorithms for quadratic programming”
    Tongli Zhang
    Yong Xia
    Journal of Combinatorial Optimization, 2022, 44 : 1099 - 1103