Expedition 317 investigated the record of global sea-level change (eustasy) within continental margin sedimentary sequences and how eustasy interacts with local forcing to produce preserved sedimentary architectures. The Canterbury Basin, on the eastern margin of the South Island of New Zealand, was selected to study these complex interactions because of high rates of Neogene sediment supply from the uplifting Southern Alps. This sediment input results in a high-frequency (similar to 0.1-0.5 My periods) record of depositional cyclicity that is modulated by the presence of strong ocean currents. The expedition recovered sediments as old as Eocene but focused on the sequence stratigraphy of the late Miocene to Recent, when global sea-level change was dominated by glacioeustasy. A transect of three sites was drilled on the continental shelf (Sites U1353, U1354, and U1351), plus one on the continental slope (Site U1352). The transect samples the shallow-water environment most directly affected by relative sea-level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site. Continental slope Site U1352 provides a record of ocean circulation and fronts during the last similar to 35 My. The early Oligocene (similar to 30 Ma) Marshall Paraconformity was the deepest target of Expedition 317 and is hypothesized to represent intensified current erosion or non-deposition associated with the initiation of thermohaline circulation in the region. Expedition 317 involved operational challenges for JOIDES Resolution, including shallow-water, continental-shelf drilling and deep penetrations. Despite these challenges, Expedition 317 set a number of records for scientific ocean drilling penetration and water-depth.