Continuity of entropy for bimodal maps

被引:1
|
作者
Alseda, L [1 ]
Manosas, F [1 ]
Mumbru, P [1 ]
机构
[1] UNIV BARCELONA,FAC MATEMAT APLICADA & ANAL,E-08071 BARCELONA,SPAIN
关键词
D O I
10.1112/jlms/52.3.547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the continuity of the topological entropy of bimodal maps of the interval and of the circle in terms of the behaviour of the iterates of the turning points and of the value of the topological entropy of the map under consideration. In the case of bimodal circle maps of degree one we also study the continuity of the entropy in terms of their rotation intervals.
引用
下载
收藏
页码:547 / 567
页数:21
相关论文
共 50 条
  • [1] Continuity of entropy for Lorenz maps
    Cooperband, Z.
    Pearse, E. P. J.
    Quackenbush, B.
    Rowley, J.
    Samuel, T.
    West, M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (01): : 96 - 105
  • [2] The continuity of the output entropy of positive maps
    Shirokov, M. E.
    SBORNIK MATHEMATICS, 2011, 202 (10) : 1537 - 1564
  • [3] Entropy formula and continuity of entropy for piecewise expanding maps
    Alves, Jose F.
    Pumarino, Antonio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (01): : 91 - 108
  • [4] Entropy continuity for interval maps with holes
    Bandtlow, Oscar F.
    Rugh, Hans Henrik
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 2036 - 2061
  • [5] Continuity of the measure of maximal entropy for unimodal maps on the interval
    Peter Raith
    Qualitative Theory of Dynamical Systems, 2003, 4 (1) : 67 - 76
  • [6] On the continuity of entropy for non-uniformly expanding maps
    Alves, JF
    Oliveira, K
    Tahzibi, A
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 409 - 414
  • [7] On characterization of positive maps preserving continuity of the von Neumann entropy
    Shirokov, M. E.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (05) : 965 - 966
  • [8] Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps
    Freitas, JM
    NONLINEARITY, 2005, 18 (02) : 831 - 854
  • [9] Fibonacci bimodal maps
    Vargas, Edson
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03) : 807 - 815
  • [10] Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows
    Saghin, Radu
    Yang, Jiagang
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (02) : 857 - 875