ORNSTEIN-UHLENBECK PROCESS ON A SUBMANIFOLD OF WIENER SPACE

被引:0
|
作者
AIRAULT, H [1 ]
VANBIESEN, J [1 ]
机构
[1] UNIV INSTELLING ANTWERP, DEPT WISKUNDE, B-2610 WILRIJK, BELGIUM
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 1991年 / 115卷 / 02期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the symmetric forms defined on finite codimensional submanifolds of the Wiener space are closable. We study the capacities induced by these symmetric forms. In particular, for a finite codimensional submanifold V, we prove the existence of an increasing sequence K(n) of compact sets of V such that the sequence of the capacities of V-K(n) goes to zero when n goes to infinity. After an adaptation of S. Kusuoka's method, this allows to construct a process on the submanifold V.
引用
收藏
页码:185 / 210
页数:26
相关论文
共 50 条