Kernel Parameter Selection for Support Vector Machine Classification

被引:0
|
作者
Liu, Zhiliang [1 ]
Xu, Hongbing [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech Elect & Ind Engn, Chengdu 611731, Sichuan, Peoples R China
关键词
parameter selection; kernel function; cosine similarity; support vector machine;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Parameter selection for kernel functions is important to the robust classification performance of a support vector machine (SVM). This paper introduces a parameter selection method for kernel functions in SVM. The proposed method tries to estimate the class separability by cosine similarity in the kernel space. The optimal parameter is defined as the one that can maximize the between-class separability and minimize the within-class separability. The experiments for several kernel functions are conducted on eight benchmark datasets. The results demonstrate that our method is much faster than grid search with comparable classification accuracy. We also found that the proposed method is an extension of a reported method in reference [2].
引用
收藏
页码:163 / 177
页数:15
相关论文
共 50 条
  • [1] Kernel parameter selection for support vector machine classification
    Liu, Zhiliang
    Xu, Hongbing
    [J]. Journal of Algorithms and Computational Technology, 2014, 8 (02): : 163 - 177
  • [2] Kernel selection for the support vector machine
    Debnath, R
    Takahashi, H
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12): : 2903 - 2904
  • [3] An Embedded Method for Feature Selection Using Kernel Parameter Descent Support Vector Machine
    Zhu, Haiqing
    Bi, Ning
    Tan, Jun
    Fan, Dongjie
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 351 - 362
  • [4] An analytical approach to fast parameter selection of gaussian RBF kernel for support vector machine
    School of Mechanical, Electronic, and Industrial Engineering, Singapore
    不详
    不详
    [J]. J. Inf. Sci. Eng., 2 (691-710):
  • [5] An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine
    Liu, Zhiliang
    Zuo, Ming J.
    Zhao, Xiaomin
    Xu, Hongbing
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 691 - 710
  • [6] Parameter Selection for Gaussian Radial Basis Function in Support Vector Machine Classification
    Liu, Zhiliang
    Zuo, Ming J.
    Xu, Hongbing
    [J]. 2012 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2012, : 576 - 581
  • [7] Parameter Selection Algorithm for Support Vector Machine
    Wang, Shuzhou
    Meng, Bo
    [J]. 2011 2ND INTERNATIONAL CONFERENCE ON CHALLENGES IN ENVIRONMENTAL SCIENCE AND COMPUTER ENGINEERING (CESCE 2011), VOL 11, PT B, 2011, 11 : 538 - 544
  • [8] An integrated approach of feature selection and parameter optimisation of kernel to enhance the performance of support vector machine
    Sarojini, Balakrishnan
    [J]. INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2015, 15 (2-3) : 265 - 278
  • [9] Model selection for support vector machine classification
    Gold, C
    Sollich, P
    [J]. NEUROCOMPUTING, 2003, 55 (1-2) : 221 - 249
  • [10] Parameter investigation of support vector machine classifier with kernel functions
    Tharwat, Alaa
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (03) : 1269 - 1302