HYPERBOLIC EVOLUTION SEMIGROUPS ON VECTOR-VALUED FUNCTION-SPACES

被引:28
|
作者
RAU, RT [1 ]
机构
[1] MATH INST,D-72076 TUBINGEN 1,GERMANY
关键词
D O I
10.1007/BF02573658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [13] we characterized exponentially dichotomic evolution operators (U(t, s))t,s is-an-element-of R on a Banach space E in terms of the spectrum of an associated C0-group on an E-valued function space. In this paper we investigate the more general case of hyperbolic evolution families (U(t, s))t greater-than-or-equal-to is-an-element-of R and derive a spectral characterization through an associated C0-semigroup. We then apply the results to periodic initial value problems and show that the semigroup can be interpreted as a generalized monodromy operator. Furthermore we briefly discuss the spectral properties of a C0-semigroup associated with an evolution family (U(t, s))t greater-than-or-equal-to s greater-than-or-equal-to 0.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 50 条