STEAM-ASSISTED GRAVITY DRAINAGE - CONCEPT, DEVELOPMENT, PERFORMANCE AND FUTURE

被引:179
|
作者
BUTLER, RM
机构
来源
关键词
D O I
10.2118/94-02-05
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the Steam-assisted Gravity Drainage (SAGD) process, heated oil drains from around growing steam chambers, driven by gravity, to lower horizontal wells. As the oil drains, the steam chamber advances into the reservoir. The process has several features: The displacement of the oil is systematic and high recoveries can be obtained. In suitable applications, oil to steam ratios higher than those found for conventional steamflooding can be achieved. The process can be used in even the heaviest of bitumen reservoirs without extensive preheating. The feature which makes this possible is that once the oil is heated, it remains hot as it drains to the production well; this is unlike conventional steamflooding where oil which is displaced from the steam chamber tends to cool on its way to production.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [1] Steam-assisted gravity drainage performance optimization
    Egermann, P.
    Renard, G.
    Delamaide, E.
    [J]. JPT, Journal of Petroleum Technology, 2002, 53 (06):
  • [2] Steam-assisted gravity drainage performance optimization
    不详
    [J]. JOURNAL OF PETROLEUM TECHNOLOGY, 2001, 53 (06): : 47 - 47
  • [3] Impact of steam trap control on performance of steam-assisted gravity drainage
    Gates, Ian D.
    Leskiw, Christopher
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2010, 75 (1-2) : 215 - 222
  • [4] Effects of Lean Zones on Steam-Assisted Gravity Drainage Performance
    Xu, Jinze
    Chen, Zhangxin
    Dong, Xiaohu
    Zhou, Wei
    [J]. ENERGIES, 2017, 10 (04):
  • [5] Impact of Noncondensable Gas on Performance of Steam-Assisted Gravity Drainage
    Al-Murayri, M. T.
    Harding, T. G.
    Maini, B. B.
    [J]. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2011, 50 (7-8): : 46 - 54
  • [6] Integral Model of Steam-Assisted Gravity Drainage
    Gil'manov, A. Ya.
    Fedorov, K. M.
    Shevelev, A. P.
    [J]. FLUID DYNAMICS, 2020, 55 (06) : 793 - 803
  • [7] An Experimental Study of Steam-Assisted Gravity Drainage
    Sheng, Kai
    Okuno, Ryosuke
    Imran, Muhammad
    Yamada, Tomomi
    [J]. SPE JOURNAL, 2021, 26 (03): : 1515 - 1534
  • [8] A New Thermogeomechanical Theory for Gravity Drainage in Steam-Assisted Gravity Drainage
    Cokar, M.
    Kallos, M. S.
    Gates, I. D.
    [J]. SPE JOURNAL, 2013, 18 (04): : 736 - 742
  • [9] Integral Model of Steam-Assisted Gravity Drainage
    A. Ya. Gil’manov
    K. M. Fedorov
    A. P. Shevelev
    [J]. Fluid Dynamics, 2020, 55 : 793 - 803
  • [10] Noncondensable gas steam-assisted gravity drainage
    Canbolat, S
    Akin, S
    Kovscek, AR
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2004, 45 (1-2) : 83 - 96