ON OPTIMALITY OF SINGULAR CONTROLS IN AN OPTIMAL CONTROL PROBLEM.

被引:1
|
作者
Mansimov, K. B. [1 ]
Rasulova, Sh. M. [2 ]
机构
[1] Baku State Univ, Azerbaijan Natl Acad Sci, Inst Control Problems, Phys & Math Sci, Baku, Azerbaijan
[2] Azerbaijan Natl Acad Sci, Inst Control Problems, Baku, Azerbaijan
关键词
Pontryagin maximum principle; necessary condition for optimality of singular controls; formula of increment;
D O I
10.17223/19988621/54/2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, a Moskalenko type optimal control problem is considered. We consider the optimal control problem of minimizing the terminal type functional (Equation presented) under constraints (Equation presented) Here, f(t,x,z,u) (g(x,y,v)) is an n-dimensional vector function which is continuous on the set of variables, together with partial derivatives with respect to z (y) up to second order, t 0 ,t 1 , x 0 ,x 1 (t 0 < t 1 ,x 0 <x 1 ) are given, φ(y) (G(x,z)) is a given twice continuously differentiable with respect to y (z) scalar function, U (V) is a given nonempty bounded set, and u(t,x) is an r-dimensional control vector function piecewise continuous with respect to t and continuous with respect to x, v(x) is a q-dimensional piecewise continuous vector of control actions. The necessary optimality conditions for singular controls in the sense of the Pontryagin maximum principle have been obtained. © 2018 Tomsk State University. All rights reserved.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [1] INTEGRAL AND MULTIPOINT NECESSARY OPTIMALITY CONDITIONS OF QUASI-SINGULAR CONTROLS IN ONE OPTIMAL CONTROL PROBLEM.
    Rasulzade, Sh M.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2020, (51): : 10 - 21
  • [2] Necessary Optimality Condition for the Singular Controls in an Optimal Control Problem with Nonlocal Conditions
    Safari, Ali R.
    Sharifov, Yagub A.
    Gasimov, Yusif S.
    [J]. FILOMAT, 2018, 32 (03) : 749 - 757
  • [3] CRITERIA OF OPTIMALITY IN THE INFINITE-TIME OPTIMAL CONTROL PROBLEM.
    Stern, L.E.
    [J]. 1600, (44):
  • [4] TO THE OPTIMALITY OF SINGULAR CONTROLS IN THE CLASSICAL SENSE IN ONE PROBLEM OF OPTIMAL CONTROL OF SYSTEMS WITH VARIABLE STRUCTURE
    Mansimov, K. B.
    Suleymanova, Sh Sh
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2018, (44): : 10 - 24
  • [5] NECESSARY OPTIMALITY CONDITIONS OF QUASI-SINGULAR CONTROLS IN OPTIMAL CONTROL
    Mardanov, Misir J.
    Mansimov, Kamil B.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (01): : 113 - 122
  • [6] NEW NECESSARY CONDITIONS FOR OPTIMALITY OF SINGULAR CONTROLS IN OPTIMAL-CONTROL PROBLEMS
    MIZUKAMI, K
    WU, H
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (08) : 1335 - 1345
  • [7] On optimal quasi-singular controls in stochastic control problem
    Mansimov, Kamil B.
    Mastaliyev, Rashad O.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2016, 36 (03): : 4 - 10
  • [8] Necessary Integral Optimality Conditions for Quasi-singular Controls in One Control Problem
    Gafarov, E. E.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2008, 42 (03) : 126 - 132
  • [9] On optimality of singular controls in control problem of the step discrete two-parametric systems
    Turkan, Mammadova F.
    Bayramali, Mansimov Kamil
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2018, (42): : 12 - 22
  • [10] Algorithm for Solving Optimal Control Problem.
    Franke, Dieter
    Luderer, Bernd
    [J]. Wissenschaftliche Zeitschrift - Technische Hochschule Karl-Marx-Stadt, 1979, 21 (07): : 853 - 858