CATENARITY OF FORMAL POWER-SERIES RINGS OVER A PULLBACK

被引:8
|
作者
ANDERSON, DF
DOBBS, DE
FONTANA, M
KHALIS, M
机构
[1] UNIV ROME LA SAPIENZA,DIPARTIMENTO MATEMAT,I-00185 ROME,ITALY
[2] UNIV LYON 1,DEPT MATH & INFORMAT,F-69622 VILLEURBANNE,FRANCE
关键词
D O I
10.1016/0022-4049(92)90089-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (T, M, K) be a quasilocal domain with maximal ideal M and residue field K, phi: T --> K the natural surjection, and R the pullback phi-1(D), where D is a subring of K. It is shown that R[[X]] is catenarian if and only if T[[X]] and D[[X]] are each catenarian. We also construct a non-Noetherian domain R such that dim(R) > 1 and R[[X1,...,X(n)]] is catenarian for each integer n greater-than-or-equal-to 1. This work leads to the question of determining the field extensions k subset-of K such that Spec(K[[X1,...,X(n)]]) --> Spec(k[[X1,...,X(n)]]) is a homeomorphism for each integer n greater-than-or-equal-to 1. It is shown that any such extension must be purely inseparable; the converse holds if K is a finitely generated extension of k.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 50 条