FORECASTING DEMAND IN INTERNATIONAL MARKETS - THE CASE OF CORRELATED TIME-SERIES

被引:1
|
作者
OFIR, C
RAVEH, A
机构
关键词
D O I
10.1002/for.3980060104
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] FORECASTING OF TIME-SERIES FOR FINANCIAL MARKETS
    Magenreuter, Reinhard
    [J]. MATHEMATICS AND INFORMATICS, 2016, 59 (05): : 516 - 525
  • [2] NEURAL NETWORKS FOR WATER DEMAND TIME-SERIES FORECASTING
    CUBERO, RG
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 540 : 453 - 460
  • [3] FORECASTING BASED ON TIME-SERIES WITH CORRELATED ERRORS BY INFORMATION PRESERVING FILTER - DEMAND FORECASTING FROM INFORMATION-THEORY
    OHTA, H
    NODA, H
    KASE, S
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1976, 7 (07) : 779 - 790
  • [4] TIME-SERIES IDENTIFICATION IN CASE OF CORRELATED MEASUREMENTS
    SEMESENKO, MP
    [J]. AVTOMATIKA, 1978, (04): : 27 - 34
  • [5] Electric Energy Demand Forecasting with Explainable Time-series Modeling
    Kim, Jin-Young
    Cho, Sung-Bae
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 711 - 716
  • [6] Bayesian forecasting of demand time-series data with zero values
    Corberan-Vallet, Ana
    Bermudez, Jose D.
    Vercher, Enriqueta
    [J]. EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2013, 7 (06) : 777 - 796
  • [7] An Application of Fuzzy Symbolic Time-Series for Energy Demand Forecasting
    D. Criado-Ramón
    L.G.B. Ruiz
    M. C. Pegalajar
    [J]. International Journal of Fuzzy Systems, 2024, 26 : 703 - 717
  • [8] An Application of Fuzzy Symbolic Time-Series for Energy Demand Forecasting
    Criado-Ramon, D.
    Ruiz, L. G. B.
    Pegalajar, M. C.
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (03) : 703 - 717
  • [9] A Development of Time-Series Model for City Gas Demand Forecasting
    Choi, Boseung
    Kang, Hyuncheol
    Lee, Kyung-Yun
    Han, Sang Tae
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (05) : 1019 - 1032
  • [10] Time-series forecasting
    Nikolopoulos, K
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2003, 19 (04) : 754 - 755