NONPARAMETRIC ENTROPY ESTIMATION BASED ON RANDOMLY CENSORED-DATA

被引:0
|
作者
CARBONEZ, A
GYORFI, L
VANDERMEULEN, EC
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 HEVERLEE,BELGIUM
[2] TECH UNIV BUDAPEST,H-1521 BUDAPEST,HUNGARY
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Shannon entropy of a random variable X with density function f(x) is defined as H(f) = - integral f(x) log f(x) dx. Based on randomly censored observations a nonparametric estimator for H(f) is proposed if H(f) is finite and is nonnegative. This entropy estimator is histogram-based in the sense that it involves a histogram-based density estimator f(n) constructed from the censored data. We prove the a. s. consistency of this estimator.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 50 条