CONTROLLABILITY AND STABILIZATION OF TWO-DIMENSIONAL ELASTIC VIBRATION WITH DYNAMICAL BOUNDARY CONTROL

被引:0
|
作者
YOU, YC [1 ]
LEE, EB [1 ]
机构
[1] UNIV MINNESOTA,DEPT ELECT ENGN,MINNEAPOLIS,MN 55455
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:297 / 308
页数:12
相关论文
共 50 条
  • [1] Stabilization of elastic plates with dynamical boundary control
    Rao, BP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) : 148 - 163
  • [2] On the stabilization of elastic plates with dynamical boundary control
    Liu, Y
    Jiang, WS
    Huang, FL
    [J]. APPLIED MATHEMATICS LETTERS, 2005, 18 (03) : 353 - 359
  • [3] Stabilization of elastic plates with variable coefficients and dynamical boundary control
    Guo, YX
    Chai, SG
    Yao, PF
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (02) : 383 - 400
  • [4] Optimal switching boundary control for two-dimensional piecewise linear dynamical systems
    Cabrera, Marly T. A.
    Cristiano, Rony
    Pagano, Daniel J.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (13):
  • [5] VIBRATION SUPPRESSION IN TWO-DIMENSIONAL OSCILLATION DYNAMICAL SYSTEMS
    Saeed, Adnan S.
    AL-Shudeifat, Mohammad A.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 4B, 2019,
  • [6] Exact bounded boundary controllability of vibrations of a two-dimensional membrane
    I. V. Romanov
    A. S. Shamaev
    [J]. Doklady Mathematics, 2016, 94 : 607 - 610
  • [7] Exact bounded boundary controllability of vibrations of a two-dimensional membrane
    Romanov, I. V.
    Shamaev, A. S.
    [J]. DOKLADY MATHEMATICS, 2016, 94 (02) : 607 - 610
  • [8] Stabilization of elastic plates with dynamical boundary control without geometrical conditions
    Liu, Yan
    [J]. Advances in Matrix Theory and Applications, 2006, : 437 - 440
  • [9] Boundary Feedback Stabilization of Two-dimensional Wave Equation
    Guo, Chunli
    Xie, Chengkang
    Shen, Fei
    [J]. ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEM, PTS 1-6, 2011, 219-220 : 957 - 960
  • [10] Exact Boundary Controllability for the Spatial Vibration of String with Dynamical Boundary Conditions
    Yue Wang
    Günter Leugering
    Tatsien Li
    [J]. Chinese Annals of Mathematics, Series B, 2020, 41 : 325 - 334