NOISY COLLECTIVE BEHAVIOR IN DETERMINISTIC CELLULAR AUTOMATA

被引:58
|
作者
GALLAS, JAC
GRASSBERGER, P
HERRMANN, HJ
UEBERHOLZ, P
机构
[1] UNIV GESAMTHSCH WUPPERTAL, DEPT PHYS, W-5600 WUPPERTAL 1, GERMANY
[2] UNIV FED SANTA CATARINA, OPT QUIM LAB, BR-88049 FLORIANOPOLIS, BRAZIL
关键词
D O I
10.1016/0378-4371(92)90106-Z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate cellular automata in four and five dimensions for which Chate and Manneville recently have found nontrivial collective behaviour. More precisely, though being fully deterministic, the average magnetization seems to be periodic respectively quasiperiodic, with superimposed noise whose amplitude decreases with system size. We confirm this behaviour on very large systems and over very large times. We analyse in detail the statistical properties of the "noise". Systems on small lattices and/or subject to additional external noise are metastable. Arguments by Grinstein et al. suggest that in the periodic case the infinite deterministic systems should be metastable too. These arguments are generalized to quasiperiodic systems. We find evidence that they do indeed apply, but we find no direct evidence for metastability of large systems.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [1] EVIDENCE OF COLLECTIVE BEHAVIOR IN CELLULAR AUTOMATA
    CHATE, H
    MANNEVILLE, P
    [J]. EUROPHYSICS LETTERS, 1991, 14 (05): : 409 - 413
  • [2] Intermittent collective behavior in cellular automata
    Jiménez-Morales, F
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (08): : 1229 - 1239
  • [3] Evolving collective Behavior of cellular automata for cryptography
    Szaban, Miroslaw
    Seredynski, Franciszek
    Bouvry, Pascal
    [J]. CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 799 - 802
  • [4] COLLECTIVE BEHAVIOR OF RANDOM-ACTIVATED MOBILE CELLULAR AUTOMATA
    MIRAMONTES, O
    SOLE, RV
    GOODWIN, BC
    [J]. PHYSICA D, 1993, 63 (1-2): : 145 - 160
  • [5] Intermittent collective behavior in totalistic cellular automata with high connectivity
    Jiménez-Morales, F
    [J]. FUTURE GENERATION COMPUTER SYSTEMS, 2002, 18 (07) : 921 - 929
  • [6] Deterministic cellular automata resembling diffusion
    Fuks, Henryk
    Mudiyanselage, Sanchala Abeykoon
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (11):
  • [7] CHAOS AND DIFFUSION IN DETERMINISTIC CELLULAR AUTOMATA
    GRASSBERGER, P
    [J]. PHYSICA D, 1984, 10 (1-2): : 52 - 58
  • [8] Collective behavior of rules for cellular automata-based stream ciphers
    Szaban, Miroslaw
    Seredynski, Franciszek
    Bouvry, Pascal
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 179 - +
  • [9] STATISTICAL PROPERTIES OF A CLASS OF DETERMINISTIC CELLULAR AUTOMATA
    BRUSA, G
    PEREZGARCIA, C
    PUCCIONI, G
    ARECCHI, FT
    [J]. EUROPHYSICS LETTERS, 1989, 8 (08): : 735 - 740
  • [10] DETERMINISTIC ONE-DIMENSIONAL CELLULAR AUTOMATA
    PITSIANIS, N
    TSALIDES, P
    BLERIS, GL
    THANAILAKIS, A
    CARD, HC
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) : 99 - 112