EIGENVALUES OF SYMMETRICAL MATRICES AND GRAPHS

被引:12
|
作者
BASS, H [1 ]
ESTES, DR [1 ]
GURALNICK, RM [1 ]
机构
[1] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
D O I
10.1006/jabr.1994.1244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class (??) of integral domains A having the property that each totally real integral element over A is an eigenvalue of a symmetric matrix over A. (??) is shown to contain all Dedekind domains and any domain in which -1 is a sum of squares. In the case A = Z, these results imply that any totally real algebraic integer is the eigenvalue of the adjacency matrix of some regular graph, thus affirming a conjecture of Hoffman. (C) 1994 Academic Press, Inc.
引用
收藏
页码:536 / 567
页数:32
相关论文
共 50 条